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Synopsis

We have done a systematic study of dynamical behaviours of nonlinear chaotic systems under memory mod-

ulation. Control and enhancement of chaos have their applications in real systems. For last two decades it

has been a field of active research. However memory modulation has recently been recognised as an effective

method of chaos control and our work indicates the richness of this method. Dynamics of chaotic systems

are usually governed by system parameters. We propose to control the system parameter(s) according to the

past and present states of the system. We have shown systems are able to show much richer dynamics under

memory modulated control. We started with memory modulatedparameter control in one dimensional maps

and moved to higher dimensional discrete maps. We have made slight modification of our prescription to

apply this method to more realistic continuous dynamical systems.

Our choice of delayed feedback modulation makes the dynamics of one dimensional (logistic) maps non–

Abelian, and since the choice of (noninvertible) map depends on the history, the system is deterministic and

also non-Markovian. These new features give rise to novel dynamical features. The zones of dynamical

stability have a complicated and hierarchically organizedstructure.Our main method for understanding the

organization of periodic orbits in such driven systems is through a generalization of the results of MSS for

the organization of periodic orbits in unimodal maps, and weshow how this scheme helps in rationalizing

the different periodic orbits that can arise in the driven system. Inaddition, we find that there are non–MSS

periodic orbits, namely the stabilization of “forbidden” itineraries for periodic orbits which results from the

choice of delayed feedback forcing.There also appear to be regions in parameter space where there are no

periodic windows and our preliminary studies of the dynamics here have revealed a peculiar characteristic of

the attendant tangent bifurcations. Although they are still of Type-I, owing to the interplay of two different



6

mappings in determining the dynamics, the actual mechanicsof the re-injection process leads to the scaling

exponents being quite different from 1
2. When applied with little modification memory dependent control

enriches dynamics of one dimensional maps to greater extent. We introduce a single step memory depen-

dence in the fully chaotic logistic map. However, we show that by using composite functions to define two

one dimensional maps, it is possible to obtain some analyticresults for the bifurcation structure. Numerical

results support the calculated bifurcation scheme and in addition yields a further insight which allows the

calculation of convergence ratio for a new period adding scenario. It can be shown that the convergence ratio

can be calculated in the similar way for any quadratic modulated maps. It is also shown that the mechanism

of period adding bifurcation is quite different from the dynamics of piecewise continuous maps where period

adding phenomenon is quite common.

The mechanism of period adding bifurcation is explained more with the analysis of two dimensional dis-

crete Lotka-Volterra system. We have shown that the period adding bifurcation is an outcome of interplay of

chaotic dynamics with ordered (periodic) dynamics. We haveshown when the dynamics with of positive and

negative Lyapunov exponents get coupled, period adding occurs. Neimark-Sacker Bifurcation is observed

in this two dimensional discrete system. As the system parameter changes the system moves from invariant

curves to chaotic bands. Center manifold theory is used to explain this scenario. Invariant curves are coupled

with chaotic bands to ensure period adding bifurcation doesnot occur with weakly stable attractors. Attrac-

tors with sufficiently large negative Lyapunov exponents cause period adding bifurcation as it couple with

chaotic ones.

Single-step memory dependent parameter modulation was modified to fit into dynamics of continuous sys-

tems. Memory dependent delay feedback was used in stead of single-step one. This modulation is shown to

have great effect on continuous dynamical systems in controlling their Lyapunov exponents. Limit cycles are

shown as a outcome of quantization of delay time. We hope our work contributes to the ongoing research

of control of chaos and consider memory modulated parametercontrol as a standard method of controlling

chaos.
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Chapter 1

Control of chaos in dynamical systems

1.1 Introduction

The concept of chaos has been introduced into science quite recently, inthe seventies. Chaotic

systems provided researchers with a new tool for modelling the uncertainty which differs from the

classical probabilistic concepts. Chaotic motions are modelled as the solutions of deterministic non-

linear differential or difference equation with floating frequency and amplitude.

The attention of many physicists, mathematicians and engineers was drawn to thestudy of chaotic

systems by the paper by D. Ruelle and F Takens (1971) who coined the term‘strange attractor’

for chaotic attractors (1), and by the paper of T. Li and J. Yorke (1975) who introduced the term

‘chaos’ (2). Serious investigations of a similar complex dynamics were performed in the former

soviet union by A. Kolmogorov, Y. Sinai, V. Arnold, V. Melnikov, Yu. Neimark, L. Shinikov and

A. Sharkovsky in the 60s-70s. Later chaotic phenomena was discovered in enormous number of

systems in mechanics, physics, chemistry, biology etc. Chaotic models were reported to be useful

for financial time series prediction and for training. Moreover such modelswere also found useful

in the study of neural networks and genetic algorithms.

From the point of view of control, chaotic systems are a particular class of nonlinear dynamical

systems having irregular oscillating solutions. Control of chaos can be considered as a subarea of

11



1.1. Introduction 12

controlling the nonlinear oscillatory systems. However problems of the control of chaos have cer-

tain distinctive features. The most important of them was pointed out by E. Ott,C. Grebogi and

J. Yorke (3). They showed that the trajectory of chaotic motion can be turned into periodic one by

means of arbitrarily small control that stabilizes the inherent periodic orbits.That concept opened

new perspectives both in natural sciences and in technology and also initiated an avalanche of re-

search in this area.

One of the reasons for interest in the control of chaos is the wide range of its potential applications

covering the entire area of science and technology. We will illustrate here some of these.

1.1.1 Mechanics and mechanical engineering

A variety of oscillatory as well as synchronization problems for mechanicalsystems arises when

one intends to design a vibration equipment. The control of a ship becomes important when it rolls

and the rolling is affected by lateral ocean waves. The motion of the ship can exhibit chaos even

for waves purely periodic in time due to the nonlinear dynamics of the ship. Thus the problem

is to decrease the amplitude of chaotic oscillations under disturbances. Againonly a low level of

control is admissible. The problem of suppressing vibrations, which can be interpreted as damping

the system to bring it down to a desired energy level, is of a similar nature.

Techniques of creating or suppressing chaos can be applied in washingmachines. It is known that

washing may be accelerated when the angular velocity of the rotor is oscillating. Moreover the

desirable kind of oscillations is chaotic due to the fact that the chaotic changes in the rotor speed

provide a better mixing and a better dissolving of the detergent.

1.1.2 Electrical engineering and telecommunications

Till recent years, investigations were mainly concerned with periodic oscillations (4). For many

years the chaotic modes were either overlooked or considered to be undesirable. Van der Pol and

Van der Mark (5) made the brief remark “Often an irregular noise is heardin the telephone re-
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ceiver before the frequency jumps” and never discusses the issue further. However during last three

decades, the interest in chaotic oscillations within the theory of circuits rose tremendously.The most

popular applications of chaos lie in the field of telecommunications.

A few ways of using chaos for signal storage of transmission were reported in (6; 7; 8; 9; 10).

Chaotic signal are used as the carrier instead of periodic one. To realizethis electrical circuits of

transmitter as well as receiver need to be synchronized. Many techniqueof controlling periodic sig-

nal fails in synchronizing chaotic one; hence new ways of controlling chaos synchronization were

developed. Synchronization of chaotic system has its application in the field of cryptography (11).

One of the first experiments on controlling chaotic oscillations was devoted to control of lasers,

where the system consisting of neodymium-yttrium-aluminium-garnate laser and afrequency dou-

bling crystal was considered (12). At the high levels of input power the intensity of the laser output

power fluctuates chaotically. With the feedback algorithm proposed by Hunt, the laser can be driven

into periodic mode. Later many successful experiments on chaos control have been performed by

different kinds of laser source (13; 14; 15; 16).

Another important field of application of chaos control is power systems. These systems under

certain natural stress fall into ‘crisis’ which can be controlled using chaos control methods (17).

Electrical generators in power systems can be controlled by broadening the attraction region of

the normal operation mode. Control of irregular oscillations of the output is achieved through the

method of transient stabilization.

1.1.3 Chemistry and chemical engineering

Studies of chaotic dynamics in chemistry has started with Belusov-Zhabotinskyreaction.Once the

existence of periodic and chaotic oscillatory modes was recognized, the idea of controlling it in

chemical reaction became quite natural. The control goal can be formulatedas achieving the steady

state mode of the reaction. In other cases it can be necessary to create chaotic oscillations. In

combustion applications chaos is desirable as it enhances the mixing of fuel with air. In chemical

reaction there are fewer parameters to control than in electronic circuits. So problem of small or
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restricted control is truly practical. Adaptive control method is very effective in controlling chemical

reactions for producing chaotic as well as oscillatory reactions.

Chaotic phenomena are already used in chemical technology. Chaotic mixing ismuch faster and

more efficient than diffusion. A better mixing yields a more uniform reaction and therefore less

impurity is present in the product. This process makes the reactions more cost effective and is

heavily used in chemical industry.

1.1.4 Biology biochemistry and medicine.

Unlike chemistry and telecommunication chaotic oscillations have been known to biologists for

long. The famous logistic map, whose role in chaos is that of the Hydrogen atom in quantum me-

chanics, has its origin in population dynamics (18). Rhythmic behaviour is a basic property in living

organisms and it facilitates the survival and evolution of them. Chaotic rhythmsare also quite com-

mon in biological systems. These systems are pierced by positive and negative feedbacks which

make them suitable for control purposes.

During the last two decades research in biochemistry and molecular biology has gained much atten-

tion. Models of molecular dynamics are based on Hamiltonian formulation and control methods for

the Hamiltonian systems are of much importance. These methods are applied to create oscillations

in bio-molecular structures and also to synchronize oscillations in different parts of the structures.

The potential applications in medicine include treatment of cardiac arrhythmia and pathological

brain activities. These motions are primarily chaotic and treatments are performed by enhancing

chaos. Both theoretical and experimental results on controlling cardiac rhythms (19; 20; 21) and

brain rhythms (22; 23) were reported in the literature.

1.1.5 Economics and finance

The existence and importance of oscillations in economic activities have been widely recognized

since 19th century. Quite recently an interest in models of nonlinear dynamics and chaos arose in

financial studies. Though far less attention was paid to the prediction and control of those economic
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activities. Recent studies showed that the dynamics of many financial time series is better described

by chaotic models than by conventional ones based the Brownian motion (24;25). Chaos theory and

neural networks has become very important in studying modern financial theory. We can forecast

an increasing significance of economics and finance as a new market forthe control of oscillations

and chaos.

1.2 Methods of chaos control

The presence of chaos in physical systems has been extensively demonstrated and is very common.

In practice, however, it is often desired that chaos be avoided. In mostcases we expect the systems

to show nice periodic behaviour. For last two decades there has been extensive research on control-

ling chaos and numerous research papers were published. The idea ofcontrolling chaos started with

the seminal paper of Ott, Grebogi and Yorke (3).

The processes of controlling chaos in dynamical systems can be divided into following three main

categories.

1.2.1 Stabilizing unstable periodic orbits

This method was suggested by Ott, Grebogi and Yorke and addressed thefollowing question:“Given

a chaotic attractor, how can one obtain improved performance and a desired attracting time-periodic

motion by making onlysmall time-dependent perturbations in anaccessiblesystem parameter?”

When controlling goal is only to make small perturbation to the system to achieve regular dynamics

then it is hard to create new orbits; generally they require stronger perturbations. A chaotic attractor

typically embeds within it an infinite number of unstable periodic orbits. By proper control small

perturbation can move the chaotic dynamics to one of the unstable periodic orbits. The parameter

is controlled in time such that it stabilises the intended unstable periodic orbit (UPO). The method

is very general and can be applied to variety of situations.
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It is important to note that this method is more effective in the presence of chaos. As chaotic

attractors embed infinite numbers of unstable orbits small parameter perturbation can stabilize one

of the number of different orbits. For non-chaotic attractors the system improvement is limited as

periodic orbits are limited to that specific system.

The prerequisite to apply this method to control chaos is that the dynamical equations of the system

should be known.
dx
dt
= F(x, p) (1.2.1)

p being the controlling parameter. Even if the dynamical equations describing the system are not

known, but the time series of some scalar dependent variablez(t) can be measured the chaotic

attractor can be reconfigured using delay coordinates.

X(t) = [z(t), z(t − T), z(t − 2T), . . . , z(t − MT)] (1.2.2)

As control of chaos often leads to making the system fall into periodic orbitsX or Eq(1.2.1) is used

to find out the Poincaré surface of section. Each rotation maps to a point in that section. From this

map a number of unstable orbits can be determined (26). After that parameterp can be perturbed to

stabilize the system to the intended UPO.

Let us start with the simplest period one orbit, higher dimensional orbits can be explained as a

generalization of the same procedure. Period one orbit acts as a fixed point on the Poincaŕe section.

Let λs andλu be the experimentally determined stable and unstable eigenvalues of the surface of

section map at the chosen fixed point. Then| λs |< 1 <| λu |. Let es andeu be the experimentally

determined unit vectors in the stable and unstable directions. Without loss of generality we can take

p = 0 for the fixed point. Ifξi denotes the ith fixed point on the Poincaré surface then for fixed point

ξ = ξN = 0. Then slight change ofp to p̄ we can approximate

g ≡ δξN(p)/δp|p = 0 ¾ p̄−1ξN(p̄) (1.2.3)

ξn+1 ¾ png+ [λueufu + λsesfs].[ξn − png] (1.2.4)
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p is rewritten aspn to associate it with nth section. The choice ofpn is such thatξn+1 falls on

the stable manifold ofξ = 0, i.e. fu.ξn+1 = 0. If ξn+1 falls on the stable manifold then parameter

perturbation can be set to zero, and the orbit for the subsequent time will approach the fixed point

at a geometrical rateλs.

1.2.2 Control by feedback

The method suggested by OGY is very efficient and has been successfully applied to some exper-

iments (27; 28). An experimental application of the OGY method requires a continuous computer

analysis of the state of the system. The changes in parameterp are discrete in time since the method

deals with Poincaŕe map. The parameter modulation is applied as the trajectory of the system

crosses the Poincaré map. The OGY method can stabilize only those periodic orbits whose maxi-

mal Lyapunov exponent is small compared to the reciprocal of the time interval between parameter

changes. Since the corrections of the parameter are rare and small, the fluctuation noise leads to

occasional bursts of the system into the region far from the desired periodic orbit, and these burst

are more frequent for large noise.

Pyragas (29) suggested the idea of a time-continuous control to overcomethis problem. With small

perturbation UPOs can be stabilized with continuous feedback control.

In the following two methods of continuous control in the form of feedback are suggested. Both

methods are based on the construction of a special form of time-continuousperturbation,which does

not change the form of the desired UPO, but under certain condition stabilize it. Feedback can be

external as well as internal. In the first method a combined feedback with a periodic external force

of a special form is used. The second method is based on self controlling delayed feedback.

External force control

Let for us consider dynamical system Eq(1.2.1). We imagine that the explicitform of the equation is

unknown but some scalar variabley(t) can be measured as a system output. If the system is available
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for external inputf (t) then we can divide the system into following subsystems

dx
dt
= P(x, y) (1.2.5)

dy
dt
= Q(x, y) + f (t) (1.2.6)

The vectorx describes the remaining variables of the dynamical system that are not of interest. For

simplicity it can be taken thatf (t) disturbs only the first equation, corresponding to the output value.

For no external force (f (t) = 0), let the system have a strange attractor. Dynamics of the system

as well as large number of distinct UPOs can be found by constructing delay coordinates (1.2.2).

From the experimental output signaly(t) various periodic signalyi(t) can be determined. where

yi(t + Ti) = yi(t) andTi is the time period for ith UPO.The differenceD(t) between the signalyi(t)

and the output signal is used as control signal.

f (t) = K[yi(t)] − y(t) = D(t) (1.2.7)

where K is an experimentally adjustable weight. This perturbation feeds into thesystem a negative

feedback forK > 0. The important feature of the perturbation is that it does not change the solution

of Eq(1.2.5) corresponding to the UPOy(t) = yi(t). By selecting the weight K stabilization can be

achieved. Near the stabilization weight only a small external force is required to stabilize the UPOs.

Delayed feedback control

The complexity of the experimental realization of the above method is mainly in the design of a

special periodic oscillator. The second methods works pretty well to such systems. In this method

the external signalyi(t) in Eq(1.2.7) is substituted for the delayed output signaly(t − τ), whereτ is

the delay time. The perturbation cam be written in the form

f (t) = K[y(t − τ) − y(t)] = kD(t) (1.2.8)
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Now when the delay coincides with the period of the ith UPOτ = Ti , then the perturbation becomes

zero for the solution of system Eq(1.2.5) correponding to this UPOy(t) = yi(t). So perturbation in

this form also does not change the solution of the system corresponding toith UPO. Like the earlier

method choice of an appropriate K leads to stabilization of the desired UPO. Asthis method does

not depend on the external signal it is much simpler to realize this system.

1.2.3 Control through periodic perturbation

The inherent irregularity of chaoic dynamics and its strong sensitivity to perturbation sometimes

lead us to believe that such dynamics cannot be destroyed by means of weak external forcing.

Moreover, the notion that the existence of three incommensurate frequencies in a system can gen-

erally lead to chaos hardly suggests that the addition of an externally produced frequency will have

controlling effect on chaotic dynamics. In the previous section we saw external feedback control

can tame chaos. Even without the presence of feedback chaos can be controlled with the presence

of small external periodic forcing. Chaotic attractor embeds infinite numbers of UPOs. Like earlier

section Poincaŕe surface of section can be generated for the surface of section. On the Poincaŕe

section a D-dimensional continuous dynamics can be represented as a canbe presented as a D-1

dimensional discrete dynamics. Colse to a UPO an unstable limit cycle can be modeled by

xn+1 = (λ + ε fn)xn (1.2.9)

whereλ > 1, < fn >= 0, < f 2
n >= 1; we can takefn to be harmonic. Angular brackets denote

the average over n. Whenε = 0 the fixed pointx∗ is clearly unstable. For finiteε the Lyapunov

exponentη corresponding to the map (1.2.9) is

η = Re< ln(λ + ε fn) > (1.2.10)

For smallε,

η = lnλ − ε2/λ2 +Ø(ε3) (1.2.11)
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When λ2lnλ < ε2 the Lyapunov exponent in negative which impliesx∗ is stable. Even when

λ2lnλ > ε2, the forcing has an effect of reducing the Lyapunov exponent. Resonant interactions can

further affect the stability of these cycle.

1.2.4 Control through synchronization

Synchronization of two identical chaotic system has been proposed by Pecora and Carroll in 1990.

Later many other processes of synchronization are proposed. Afraimovich et al. investigated the

possibility of some different types of synchronization where the parameters does not match. The

idea was developed further by the works of Rulkovet al. (30; 31) and Parlitzet al. (32). This

generalization of synchronization of chaotic system leads us to control ofchaos of response system.

We consider an n-dimensional dynamical system

u̇ = f(u) (1.2.12)

the system can be divided into two subsystems [u=(v,w)]

v̇ = g(v,w); ẇ = h(v,w) (1.2.13)

wherev = (u1, . . . ,um), g = ( f1(u), . . . , fm(u)), w = (um+1, . . . ,un) andh = ( fm+1(u), . . . , fn(u)).

Now a new subsystemw
′
can be created identical to thew system by substituting the set of variables

v for the correspondingv
′

in the functionh and the previous equation can be augmented with the

new system

v̇ = g(v,w); ẇ = h(v,w); ẇ′ = h(v,w
′
) (1.2.14)

The subsystem componentsw andw
′

synchronize only ifw
′ → w ast → ∞. In the infinitesimal

limit this leads to the variational equations for the subsystem;

ξ̇ = Dwh(v,w)ξ (1.2.15)
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whereDwh is the Jacobian of thew subsystem vector field with respect tow only. This equa-

tion leads to the calculation of the Lyapunov exponents of the subsystem, referred in literature as

conditional Lyapunov exponents. If the largest conditional exponentis negative both subsystems

synchronize.

In this analysis parameters of both the subsystem are taken to be identical; which in practical sys-

tems are often not true. It can be shown that if the parameters of the subsystems differs slightly then

also both system synchronizes.

The generalized version of synchronization suggests that for two non-identical systems (e.g. two

Lorenz with different parameter values) there may exists a smooth functional dependencethat con-

nects the overall nature of both the system. If two chaotic dynamical systems are generally synchro-

nized and the drive system is non-chaotic the response system can also be non-chaotic (for certain

range of parameters ) though it should be chaotic for its own parameter value (33).

1.3 Discussion

A nonlinear system with chaotic behavior is very sensitive to initial conditions,particularly in the

system with large Lyapunov exponents (34). A tiny error may lead to failureof the control pro-

cess when its errors are amplified exponentially with time. Such errors can beintroduced by the

linearization of a nonlinear system, the inaccuracy of experimental measurement, and the noisy en-

vironment. A number of presented methods modify control parameters once each period of Poincaré

map (3; 38; 35; 36), and the stabilization can be realized only for such periodic orbits whose

maximal Lyapunov exponent is smaller than the reciprocal of the time interval between parame-

ter changes. For the control system with large Lyapunov exponent or high-order unstable periodic

orbits, the tiny errors may ‘kick’ the system state out of its controllable region. The fluctuation

noise leads to occasional bursts of the system into the region far from the desired periodic orbit, and

these bursts are more frequent for a large noise. Therefore the idea of adjusting the system state

more frequently than once each period T (35; 37), and the idea of a time-continuous control seems
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attractive in this context (29).

Pyragas have proposed two methods of permanent chaos control with a small time-continuous per-

turbation in the form of linear feedback (29). The stabilization of unstable periodic orbits (UPOs)

of a chaotic system is achieved either by combined linear feedback with the use of a specially de-

signed external oscillator or by delayed self-controlling linear feedbackwithout any external force.

They have calculated the maximal Lyapunov exponent of the UPOs using thelinearization of system

to analyze the local stability of the system and to select suitable experimentally adjustable weight

parameter K. Both methods are based on the construction of a special formof a time-continuous

perturbation, which does not change the desired UPO, but can stabilize itunder certain conditions.

Ushio proposed a method of chaos control for stabilizing a periodic orbit embedded in a discrete-

time chaotic system based on contraction mappings in 1995 (40). The validity ofthe method is

shown using a property of contraction mappings.

An open-plus-closed-loop (OPCL) method of controlling nonlinear dynamicsystems was presented

by Atlee Jackson and Grosu in 1995 (39). The input signal of their method isthe sum of Ḧubler’s

open-loop control and a particular form of a linear closed-loop control,the goal of which can be

selected as one of the UPOs embedded in chaotic attractor, or another possible smooth functions

of time. The asymptotic stability of the controlled nonlinear system is realized by thelinear ap-

proximation around the stabilized orbit. But the calculation of the closed-loop control signal is very

difficult in some cases, especially for complex and high-dimension chaotic systems.

In recent years many more control algorithms have been proposed and like the previous methods

they all have their own shortcomings. While feedback methods have large parameter controlling

range, practical implementation becomes difficult for fast chaos. The feedback control chaos meth-

ods stabilize one of the unstable periodic orbits (UPOs) embedded in its chaoticattractor by applying

small temporal perturbations to an accessible system parameter. For some high-speed systems such

as chaotic circuits and fast electro-optical systems, there is difficulty in attaining real-time data of

the system parameters and variables. Similarly non-feedback based control methods lacks energy

optimization. Recent research (41) based on genetic algorithm are proposed to optimize the signal
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strength. This approach can achieve the control goal with significantly lower power, ranging from

one to three orders of magnitude in difference.
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Chapter 2

Anti-control of chaos in dynamical

systems

2.1 Introduction

Most studies which attempt to control chaotic dynamical systems direct their efforts towards con-

trolling the system to regular periodic orbits or to specific chaotic orbits (1; 2). However, there have

been few attempts at control directed towards enhancing the chaoticity of chaotic flows. This is an

important problem for its own intrinsic interest and may have practical applications as well. An

important example of a situation where enhancing chaos is useful, is the process of mixing (3; 4; 5)

. Mixing is a consequence of the stretching and folding of chaotic flows. A system which has expo-

nential stretching, as in a chaotic flow, can mix efficiently. Many mixing processes like fluid flows,

combustion processes, chemical reactions, heat transfer processesetc., can be modeled by chaotic

flows (3). An enhancement of the chaoticity of such systems can lead to an enhancement of the rate

of mixing; an outcome which has desirable consequences in many of these contexts. In addition to

enhancing the rate of mixing, the enhancement of chaos can be desirable and useful also in other

situations. In the case of biological systems, there are several instancesof situations where main-

taining or enhancing chaos is desirable (6) . It has been suggested thatthe pathological destruction

26
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of chaotic behavior may be responsible for heart failure (7) , and some types of brain seizures (8).

Techniques which are capable of enhancing and maintaining chaos could be useful in such contexts

(9).

2.2 Enhancing chaos with parametric modulation

An important parameter, which characterizes the degree of chaos in a chaotic flow is the Lyapunov

exponent, which gives the average rate of stretching. However, the rate of stretching is not uniform

over a chaotic attractor in the case of dissipative flows or over the phase space of a conservative flow.

Thus the local Lyapunov exponent (LLE) , a measure of the local rate of stretching, is different in

different regions of the phase space (10) . The nonuniform nature of thespatial distribution of the

LLEs can be exploited to construct a mechanism that can enhance chaos and, hence, the rate of

chaotic mixing.

Let us consider an autonomous nonlinear dynamical systemx of dimensionn, evolving via the

equations

ẋ = F(x, µ) (2.2.1)

where the set of parametersµ takes values such that the trajectory shows chaotic behavior. Let

w(x, t) be the tangent vector to the trajectory at the pointx and timet. The evolution ofw is given

by

ẇ = (w.∇)F (2.2.2)

The Lyapunov exponent of the system is defined by

λ = lim
t→∞

1
t
‖ w(x, t) ‖
‖ w(x(0),0) ‖ (2.2.3)

wherex(0) is the value ofx at t = 0 and‖ w ‖ is the norm ofw. Now define the local Lyapunov

exponentλ(x) as

λ(x) = lim
△t→0

1
△ t

ln
‖ w[x(t+ △ t), t+ △ t] ‖

‖ w[x(t), t] ‖ (2.2.4)



2.2. Enhancing chaos with parametric modulation 28

The quantityλ(x) represents the local rate of stretching at the pointx. This is, in general, not uniform

over the attractor. Note that the Lyapunov exponentλ Eq[2.2.3] is the average value of the LLEs for

a long orbit or can be obtainedby averaging the LLEs over the invariant density of the attractors in

dissipative systems.

A control procedure can be set up to enhance chaos and insofar as this improves mixing, the mixing

rate can be increased utilizing the distribution of the LLEs. The control procedure operates in

regions where the LLEs fall substantially below the average value . If, atany time, the LLE of the

system falls below its average value to the point where

λ(x) < (λ − γσk) (2.2.5)

whereσk is the standard deviation of the distribution of LLE andγ is some chosen factor, the control

is activated so that the parameterµ is changed toµ + sdµ . Heredµ is a small increment ands takes

values+1 or −1 depending on which choice enhances the LLE. The system is allowed to evolve

with the new value of the parameter as long as the condition Eq(2.2.5) is satisfied. Thereafter the

parameter is reset to its original value. To decide the signs, we can write an equation forw in matrix

notation in the form

ẆT =WT MT , Ẇ = MW (2.2.6)

whereWT is a row vector and the matrixMT is given byMT = ∇F. The equation for the norm of

W can be written as

‖ Ẇ ‖2=WT(MT + M)W. (2.2.7)

Thus the rate of change in the norm ofW due to change in the parameter is given by

△ ‖ Ẇ ‖2 = ‖ Ẇ(µ + dµ) ‖2 − ‖ Ẇ(µ) ‖2

≃ WT(MT
µ + Mµ)Wdµ (2.2.8)
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where the last step is obtained by expanding to lowest order indµ andMµ = ∂M/∂µ . Clearly, for

the local rate of stretching to increase△ ‖ W ‖2 must be positive . Thus the signs is determined to

ensure that△ ‖W ‖2 is positive.

It must be noted that Eq(2.2.8) is written in the lowest order indµ . Actually, the effect of the per-

turbation is nonlinear since when the parameter changes the entire trajectoryof the system changes.

Hence, the effect on the LLE can be quite different from that given by Eq(2.2.8) due to the effect of

the higher nonlinear terms. In many cases the enhancement in the Lyapunovexponent turns out to

be substantially higher than that expected in the linear approximation.

The procedure used above to enhance chaos and the mixing rate can be easily modified to apply to

the case of discrete maps. For maps, the evolution equation Eq(2.2.1) can bewritten as

xt+1 = f(xt, µ) (2.2.9)

wherext are the dynamical variables at timet. The evolution of the tangent vectorw is given by

wt+1 = (wt.∇)f (2.2.10)

The control procedure is the same as above. The parameterµ is changed toµ + sdµ when condition

(2.2.5) is satisfied. To decide the signs we can write Eq(2.2.10) in matrix form as

Wt+1 = MWt (2.2.11)

whereMT = ∇ f . The equation for the norm ofW is

‖Wt+1 ‖2=WT
t MT MWt (2.2.12)
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Thus the rate of change in the norm ofW due to change in the parameter is given by

△ ‖W ‖2 = ‖Wt+1(µ + dµ) ‖2 − ‖Wt+1(µ) ‖2 (2.2.13)

= WT
t (MT Mµ + MT

µM)Wtdµ (2.2.14)

where the last step is obtained by expanding to lowest order indµ andMµ = ∂M/∂µ. For control

to enhance chaos and rate of mixing, the signs for the parameter changedµ must be such that

△‖Wt+1 ‖2 is positive.

Briefly, one can enhance the average rate of stretching by introducing asmall parameter perturbation

which enhances the LLE whenever the system trajectory visits a region where the LLEs take values

much smaller than their average value.

2.3 Enhancing chaos by periodic and quasi-periodic perturbation

Weak periodic perturbation has been used to suppress chaos in dynamical systems. However, Weak

periodic or quasi-periodic perturbation can also be used to induce chaosin non-chaotic parameter

ranges of chaotic maps, or to enhance the already existing chaotic state. Ifthe perturbation is large

enough then the system goes to chaotic state in a easier way.

Transition of periodic state to chaotic attractor under weak periodic perturbation is highly dependent

on the local dynamics. Chaos is more likely to occur near bifurcation points. Different kinds of

bifurcations lead to different routes to chaotic transition. Two dimensional chaotic maps can be

expressed under periodic perturbation

xn+1 = f (xn, yn, µ) + ε cos(2πωn) (2.3.1)

yn+1 = g(xn, yn, µ)

whereε is the amplitude of perturbation andω is the frequency of the signal. The perturbed map

with period-p perturbation can be equivalently described by a set ofp equations
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xpn+i = f (xpn+i−1, ypn+i−1, µ) + ε cos(2πωn) (2.3.2)

ypn+i = g(xpn+i−1, ypn+i−1, µ)

wherei = 1,2, . . . , p andn = 0,1,2, . . .. These p maps are topologically conjugated and exhibit

analogous behaviour. For period doubling bifurcation, transition of periodic orbit to chaos depends

on perturbation amplitude and not on perturbation frequency. The lower period orbits gets multiplied

by p and gives higher periods whereas higher periodic orbits transits to chaos. For Hopf bifurcation

chaotic transition does depend on frequency of perturbation as the perturbation frequency breaks

the frequency locking and hence the periodic state of the dynamical system.

The dynamics becomes more interesting as one applies quasi-periodic perturbation to periodic or-

bits. For very weak perturbation low period attractors become quasi-periodic or torus attractors.

As the perturbation gets stronger torus attractors goes through fractalization and become strange

non-chaotic attractors (SNA) (11; 12). With perturbation amplitude being large the dynamics of

the system can oscillate between chaotic and SNA which for sufficiently large amplitude becomes

uniformly chaotic. In period doubling bifurcation SNA undergoes a crisesand becomes chaotic

whereas for Hopf bifurcation there is a direct transition from SNA to chaotic attractor without any

crisis. Quasi-periodic perturbation enacts band merging of separate chaotic attractor and hence

generating robust chaos.

2.4 Enhancing chaos via time delay feedback

A a natural yet nontrivial question for anti-control of chaos is whetherone can make an arbitrarily

given system chaotic or enhance the existing chaos of a chaotic system byusing small controls. A

positive answer can be given by showing that any given discrete-time autonomous system of finite

dimensionality, which can even be originally stable provided that it has a bounded Jacobian, can be

driven to be chaotic by using small-amplitude state feedback controls (13; 14). However this effec-
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tive anti-control method utilizes a full state feedback control, which may not be desirable in some

applications. Therefore, one may sometimes resort to finding different methodologies as stated ear-

lier.

A system with time delay is inherently infinite dimensional, so it is known to be able to produce

complicated dynamics such as bifurcation and chaos, even in a very simple first-order system. In

particular, chaotic behaviors are observed to exist in some delay-differential equations due to their

associated difference equations (15; 16). As a generalization one can approximate relationship

between an nth-order stable linear differential equation with a time-delay feedback and a suitable

discrete map. This, in turn, suggests a small-amplitude time-delay feedback method for anti-control

of chaos in an nth-order stable linear or nonlinear differential equation.

We consider an nth-order single-input single-output (SISO) linear time-invariant (LTI) system de-

scribed by the following differential equation:

y(n)(t) + αn−1y(n−1)(t) + . . . + α1y(1)(t) + α0y(t) = β0u(t) (2.4.1)

whereu(t) andy(t) are the input and output of the system, respectively,{α j}n−1
j=0 andβ0 are constatnts

with α0β0 , 0. The uncontrolled system (2.4.1) , withu(t) = 0 therein, is therefore stable in the

sense thatz(t)→ 0 ast → ∞ , where

z(t) = [z1, z2, . . . , zn]T = [y, y(1), . . . , y(n−1)]T

time delay feedback can be designed of the form

u(t) = w(y(t − τ)) (2.4.2)

wherew is a continuous function andτ > 0 is the delay time, satisfying

|u(t)| 6 ε, ∀t > 0 (2.4.3)
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for a prespecified amplitudeε > 0, such that the outputy(t) of the system is chaotic in a rigorous

mathematical sense.

Eq(2.4.1) can be recast in the following n-dimensional state-space form:

ż = Acz+ β0 bcu (2.4.4)

whereAc andbc are in the controllable canonical form, namely,

Ac =
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Clearly, the functional form for the map w is not unique. One simple choice is

u(t) = w(y(t − τ)) = ε sin(σy(t − τ)) (2.4.5)

which satisfies the requirement (2.4.3) . If the map

yk+1 =
β0

α0
w(yk) = ε0 sin(σyk) (2.4.6)

is chaotic, then we may expect that the time-delay feedback Eq.(2.4.5) can make the output y(t) of

system (2.4.1) chaotic provided that the delay time is sufficiently large andε0 =
εβ0

α0
.
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For any fixed nonzero value ofε0 , the origin is a globally asymptotically stable fixed point of this

map, if 0< σ < ε0 . Asσ increases and passes through the value ofε0 , the map (2.4.6) has one pair

of nonzero conjugate, locally asymptotically stable, fixed points:y+ > 0 andy− = y+ < 0. Asσ

continues to increase, each nonzero fixed point undergoes a cascade of period-doubling bifurcations

leading to chaos. With an even further increase of the bifurcation parameter valueσ, each chaotic

attractor increases in size. Finally, at a critical value ¯σ = π
ε0

, the two chaotic attractors merge into

one, still chaotic but with an almost unchanged size proportional toε0.

2.4.1 Enhancing chaos in stable nonlinear system

Let us consider a nonlinear SISO continuous-time synamical system of the form

y(n) = φ(y) + ψ(y)u (2.4.7)

whereφ andψ are smooth nonlinear functions ofy = [y, ẏ, . . . , y(n−1)]T . Let y = 0 is an asymptot-

ically stable fixed point of the uncontrolled system [withu(t) = 0 therein] andψ(0) , 0. There are

two ways to transfer this system into a linear system of the form (2.4.1).

Approximate linearization approach

A typical way of system linearization is approximate linearization. Suppose thatthe maximum

amplitude of the control inputu(t) of system (2.4.7) isε > 0. Since the system is stable about its

zero fixed point by assumption, for a sufficiently smallε, there exists a small neighborhoodΩ of the

origin such that ify(0) is inΩ theny(t) stays inΩ forever. In this small neighborhoodΩ, Eq.(2.4.7)

can be represented by its linearization, evaluated at the origin, as follows:

y(n) + αn−1y(n−1) + . . . + α1y(1) + α0y = ψ0u(t) (2.4.8)

where

αi = −
∂φ(y)
∂y(i)

|y=0, i = 0,1, . . . ,n− 1
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It follows from the analysis of the last section that the small amplitude time-delay feedback

u(t) = w(y(t − τ)) = ε sin(σy(t − τ)) (2.4.9)

can makey(t) chaotic within the bounded region .

Exact linearization approach

Another method for system linearization is the feedback exact linearization.Let the controller be

u =
1
ψ(y)

(−φ(y) − γn−1y(n−1) − · · · − γ1y(1) − γ0y+ v(t)) (2.4.10)

where{γi}n−1
i=0 aren constants withγ0 , 0, such that

sn + γn−1sn−1 + · · · + γ1s+ γ0 (2.4.11)

is a Hurwitz stable polynomial. Then Eq.(2.4.7) becomes

y(n) + γn−1y(n−1) + · · · + γ1y(1) + γ0y = v(t) (2.4.12)

which is in the same form as (2.4.1). Therefore, controller (2.4.11) withv(t) = ε sin(σy(t − τ)) can

make system (2.4.7) chaotic.

Clearly, controller (2.4.11) actually cancels the nonlinearity of the original system and renders it

linear. As it stands, the controller is more complicated than the given system, which is physically

impractical in most cases. However,the main purpose is simply to reformat the given system into an

appropriate form by this ‘controller’ and then to create chaos by using thetime-delayed feedback

controller v(t) in the suitable form. Therefore, if we consider theu in (2.4.11) as a coordinate

transform rather than a controller, while the controller isv , then this approach is reasonable for

anti-control of chaos.
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2.5 Discussion

In applications of feedback control schemes it is generally necessary tomeasure the system state

variables, thereby generating a control signal that is then applied to the signal to an accessible sys-

tem parameter. In practice, it is relatively difficult to implement this class of schemes to some

high-speed systems such as chaotic circuits and fast optoelectrical systems. Compared to feedback

control techniques for inducing and enhancing chaotic behavior of nonlinear systems of small time

scales, nonfeedback methods have the advantages of speed and flexibility. Furthermore, on-line

monitoring and processing are not required. Of course, in order to findappropriate signals for con-

trol, the nature of the system dynamics must be understood a priori. This class of control approaches

is suitable for cases in which no real-time data or only highly limited measurements ofthe system

state are available. A number of studies on nonfeedback anticontrol of chaos have been carried

out with various control signals, for example, constant perturbations (17; 18) , weak noise signals

(19; 20) , and weak periodic perturbations (21; 23) . A few studies have also demonstrated the dual

function of suppressing and inducing chaos with applications of weak periodic perturbations to the

nonlinear dynamic systems (24; 25).

The non-feedback methods proposed in literature used control signals that had been assigned some-

what intuitively or arbitrarily rather than sought out based on optimization ofthe signal parameters.

In the case of using a periodic perturbation as the control signal, with the frequency fixed a priori,

the amplitude for achieving the control goal can be found by simply varying itsvalue within a range.

The signal determined in this manner is not optimal in any sense. Additionally, for a multi param-

eter control signal, the method for determining the proper combination of the parameter values is a

problem. The approach used in finding a signal able to work efficiently in achieving a preset control

target seems significant.

Power consumption for chaotification of non-chaotic orbits can be optimized by various methods

(26). In use of periodic signals of high harmonics, the power of the optimized signal is not nec-

essarily reduced with an increasing number of harmonic modes, while using quasi-periodic signals

of multiple incommensurable frequencies has the trend of reducing signal power with an increase
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in the number of the modes. However, the Genetic Algorithm-optimized signals of low-mode are

favorable for their simplicity and effectiveness.

Although the differences are within one order of magnitude, the power of a quasi-periodicsignal

needed to reach the control goal is generally lower than a periodic one withthe same number of

modes.

To destabilize an ordered fixed-point or periodic state, the power required for chaotification varies

relatively slowly at comparatively lower LLEs but increases drastically asthe preset value of the

target LLE reaches a certain critical value. In the case of enhancing thechaoticity of a chaotic state,

required control power increases as preset target LLE increases.Unlike that for triggering chaos in

ordered states however, here is no obvious slow-varying region appearing in the correlation of min-

imum power versus target LLE. Performing chaotification with GA-optimized weak perturbations

demonstrates that further enhancing the chaoticity of a chaotic state needs more control power than

triggering chaos in an ordered state, either fixed-point or periodic state.
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Chapter 3

Control end enhancement of chaos

through memory dependent feedback

Chaos is omnipresent in nature. For a nonlinear system of more than two degrees of freedom, it is

chaotic whenever its evolution sensitively depends on the initial conditions. Mathematically, there

must be an infinite number of unstable periodic orbits embedded in the underlying chaotic set and

the dynamics in the chaotic attractor is ergodic. Physically, chaos can be found in nonlinear optics

(laser), chemistry (Belouzov-Zhabotinski reaction), electronics (Chua-Matsumoto circuit), fluid dy-

namics (Rayleigh-B́enard convention), meteorology, solar system, and the heart and brain of living

organisms. As chaos is intrinsically unpredictable and its trajectories diverge exponentially in the

course of time evolution, controlling chaos is apparently of great interest and importance. Ott, Gre-

bogi and Yorke (1) proposed a successful technique to control low-dimensional chaos. The basic

idea is to take advantage of the sensitivity to small disturbances of chaotic systems to stabilize the

system in the neighborhood of a desirable unstable periodic orbit naturallyembedded in the chaotic

motion. Pyragas (2) proposed a more efficient method which makes use of a time-delayed feedback

to some dynamical variables of the system. Control of spatiotemporal chaos inpartial differential

equations was also considered (3; 4). As an alternative method of control, chaos synchronization

was pioneered by Pecora and Carroll (5). The theory and application of chaotic synchronization has

40
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been extensively studied (6) in various research directions, for instance, electronic circuits, laser ex-

periment, secure communication, biological and chemical systems, shock capturing (7), and wake

turbulence (8). Synchronous stability was studied by Pecora and Carroll (9) and Yang et al. (10).

The stability of the synchronous state can be understood from the eigenvalue distribution of the

coupling matrix of a nonlinear system.

As opposed to the mainstream of controlling or eliminating chaos in dynamical systems, anti-control

of chaos, which means creating chaos when it is beneficial, has also attracted some growing inter-

est. This is due to some desirable features of chaos in some time- and/or energy-critical applications

where chaos can provide a system designer with a variety of special properties, richness of flexi-

bility, and a cornucopia of opportunities. Recent studies have shown thatchaos can be used for a

variety of applications such as information transmission with high power efficiency (11), generating

truly random numbers (12; 13), and novel spread spectrum (14), ultrawide bandwidth (15; 16), and

optical (17) communication schemes. Examples also include liquid mixing, human brain and heart-

beat regulations (18; 19). It is expected that chaos research in engineering will eventually reach the

point where it will lead to improved and refined design procedures, enabling a designer to design a

system to be either chaotic or nonchaotic at will.

Numerous methods have been suggested to control and enhance chaos of the dynamical systems.

OGY method is one of the most popular methods to control chaos. However thismethod has some

drawbacks as it deals with the Poincaré map. The method can stabilize only those periodic orbits

whose maximal Lyapunov exponent is small compared to the reciprocal of the time interval be-

tween parameter changes. A more effective method of time continuous control was suggested later

by Pyragas. Pyragas suggested two alternative methods of chaos control. Chaotic systems can be

stabilized to a periodic orbit by the application of small additive external drive. As an alternative

method it was suggested that this external drive can also be taken as a delay feedback.

Here we present an different method for chaos control. In general delay feedback dependson the

difference in state variable in different times. It is applied with some external coupling. We show

this delay can also be memory dependent to control chaos.
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Poincaŕe maps and stroboscopic maps are quite useful tool to analyse chaos. Chaos is possible only

in systems which have dimensions more than two. However stroboscopic mapping enables us to

make a time slice of equal interval and the effective system is a discrete time dynamical system of

lower dimension. This low dimensional discrete systems retains the main aspects of chaotic dynam-

ics and are easier to analyse. For this reason analysis of this discrete time dynamical systems or

maps are very important in the study of nonlinear dynamics.

In the fourth chapter we discuss the effect of memory dependent feedback in one dimensional

quadratic maps. In discrete system delay feedback is translated as n-stepmemory dependent feed-

back. We are interested in one step memory dependent feedback as maps are generated by strobo-

scopic mapping and the step width can be adjusted by estimation of return time of thesystem. In

the fourth chapter we show the change of dynamics in logistic map with the application of memory

dependent modulation of the system parameterr. The system not only becomes periodic for a larger

range of the system parameter it also depicts richer dynamical structures.Crises and period incre-

menting bifurcation are among the new features in the bifurcation diagram. A period five window

emerge through intermittent transition which lead to non-standard type-I intermittency with expo-

nent 0 [in stead of the standard exponent−1
2]

In chapter five we look into the interplay of chaotic and periodic dynamics in view of memory

modulated control. Under memory modulation one dimensional system effectively behave as a two

dimensional one. We take logistic map again as our model system but control the system such that

one part of the dynamics always remain chaotic; the other part move from periodic to chaotic state.

The most interesting dynamics of this system is period adding bifurcation. Thisscenario is also

different from border collision dynamics which is very common underlying dynamics for period

adding bifurcation. We show an elaborate analysis to explain period addingbifurcation and a a uni-

versal period adding exponentδ is calculated for quadratic map. We apply the negative algorithm to

the system to show that the same formulation with positive feedback can enhance chaos to a great

extent.
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We move to higher dimensional discrete system in chapter Six. In ecology, there are some

species whose population goes from generation to generation, for example, gypsy moths or any of

many other species of insects. These topics are usually modelled by difference equations, iteration

map or discrete dynamical systems. Instead of looking to stroboscopic maps of higher dimensional

chaotic systems we take the discrete version of famous Lotka-Volterra population model. We exam-

ined the fixed point dynamics and bifurcations of this dynamical system and investigate the effect of

memory dependent feedback on it. The system undergoes Neimark-Sacker bifurcation, fold bifur-

cation and flip bifurcation as different stability relation is satisfied between the system parameters.

Interestingly we find such memory dependent feedback can lead to periodadding dynamics also in

two dimensions. Further investigation confirms our speculation that interplay of chaos with periodic

dynamics leads to period incrementing bifurcation.

As a natural progress we move from two dimensional discrete dynamical systems to three dimen-

sional continuous time system. In chapter seven we analyse the system with time continuous delay

feedback. Keeping analogy with memory dependent feedback we modify the parameter with mem-

ory dependent continuous time delay. We first apply it to damped harmonic oscillator and show that

the damped oscillator can be modified to a limit cycle with memory delay feedback. Limitcycle

only occurs for some discrete values of delay. This effective method is applied to three dimensional

rössler system and we analyse and predict the values of the delay neededfor the formation of limit

cycle.
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Chapter 4

The phase–modulated logistic map

4.1 Introduction

Chaos control has been an ongoing theme of research in nonlinear dynamics since the early 1990’s

(1) when it was realized that small parametric perturbations could stabilize periodic orbits embed-

ded within chaotic attractors. The sensitivity to initial conditions that is characteristic of chaotic

dynamics can, depending on the circumstance, be either wanted or an undesirable dynamical fea-

ture. Thus both theoretical and practical considerations have been responsible for the interest in the

area, resulting in a large body of work on different methods for ensuring a desired (usually periodic

or stable) motion in a nonlinear dynamical system. A variety of techniques havebeen employed,

many of which have been realized in practical applications; several of these have been reviewed in

detail (2).

One of the most powerful methods for chaos control is through feedbackstabilization (3). It

is widely recognized that feedback, as a general principle, is an efficient means of ensuring stable

behaviour; this has been widely used (4; 5). (Linear feedback systemshave also been studied in

the context of dynamical systems theory (6).) Another common technique forcontrolling chaotic

motion is by modulation of the system parameters: by judiciously varying parameters, it is often

possible to drive a nonlinear system into a desired dynamical state (2).

45
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By combining both delayed feedback and parametric modulation it is possible to devise versa-

tile methods for chaos control and in the present paper we study a simple dynamical system wherein

both these aspects are included. This is the logistic map where the nonlinearity parameter is modu-

lated by linear feedback,

xn+1 = (α + ε sgn(xn−1 − xn))xn(1− xn). (4.1.1)

The quantityφ = sgn(xn−1− xn), termed an instantaneous phase (7), has been used in previous work

to detect order within chaotic dynamics (7; 8; 9). The use of time–delays hasthe well–known effect

of increasing the dimensionality of the problem. Thus, the above driven dynamical system can be

rewritten as a two–dimensional map,

xn+1 = (α + ε sgn(yn − xn))xn(1− xn) (4.1.2)

yn+1 = xn, (4.1.3)

although, as we argue in Section 4.2 below, the dynamics is effectively 1–dimensional, and the

system can be more easily studied as the mapping(s)

xn+1 = f±(xn) ≡ (α ± ε)xn(1− xn) (4.1.4)

with f+ or f− being chosen dynamically, namely in a history–dependent manner. This makes the

dynamicsnon Abelian, since f+( f−(x)) , f−( f+(x)) for nonzeroε.

This non–Abelian character gives rise to novel dynamical behaviour which is described in detail

in Section 4.3 of this paper. In the following Section 4.2, we first discuss the model, and argue that

analysis in terms of 1-dimensional maps can adequately explain the different dynamical regimes.

We obtain a phase diagram of the system under variation of the parametersα andε; its main features

can be understood through a generalization of the kneading theory for unimodal maps developed

by Metropolis, Stein and Stein (MSS) (10). This theory, which takes into account itinerary shifts
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between mapsf+ and f−, is presented in Section 4.4. Because of the history dependent nature ofthe

dynamics, the intermittency found near specific tangent bifurcations exhibitsnonstandard scaling

exponents, the origin of which lies in the details of the dynamics (11), as discussed in Section 4.4.

One additional motivation for studying the specific form of modulation which switches the non-

linearity parameter between different values is that it can be implemented quite easily using digital

outputs (6; 12). In the concluding Section 4.5 we outline a simple circuit-basedexperimental real-

ization of the proposed feedback modulation. There have been related earlier studies of the logistic

map where similar parametric modulation has been studied both for periodic (14;13) and stochastic

(13) drives, although without feedback or delay. The analysis used here could find application for

other similar forms of driving, and we conclude this paper with a discussion and summary of our

results.

4.2 Phase–diagram under modulation

We examine the behaviour of typical orbits of Eqs. (4.1.2-4.1.3) as a function of the parameters. The

dynamics for the case ofε = 0, when the system reduces to the unmodulated logistic map is well

understood. For smallε, the nonlinearity parameter undergoes slight variation, and the dynamics

can be either periodic or chaotic, depending on the parametersα andε. The motion is confined to

the unit square, but since the Jacobian corresponding to Eqs. (4.1.2-4.1.3) is singular, the resulting

orbits are further constrained. For all orbits with period, 1, there is an eigenvalue which is zero;

thus they are either a set of points (when the orbit is periodic), or lie onone dimensionalcurves in

the (x, y) plane when the orbit is chaotic. This feature of the motion, which is particularto the form

of modulation that we have considered here, allows for considerable simplification in the analysis.

In order to get a global view of the dynamics of the modulated system, we obtainthe phase–

diagram of the different dynamical regimes as a function of 3≤ α ≤ 4, and forε > 0. In a single

logistic map, the motion can become unbounded when the nonlinearity parameterα exceeds 4, and
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in order to focus on dynamics that remains globally bounded, we rescale Eq. (1) as

xn+1 = [α + (4− α)ε′sgn(xn−1 − xn)]xn(1− xn), (4.2.1)

and examine the parameter regime 0≤ ε′ ≤ 1. The dynamics can be bounded even forε′ > 1,

depending on the value ofα, but we do not consider this region here. The case of negativeε is also

not studied here since this latter system has additional features that are consequent on initial state

sensitivity; this will be discussed elsewhere.

Of the two Lyapunov exponents, one is zero, while the other is given by

λ = lim
N→∞

1
N

N
∑

i=1

ln |∂xi+1

∂xi
|. (4.2.2)

Shown in Fig. 4.1 are regions in the (α, ε′) plane where the motion is periodic or chaotic. The re-

gions of stability in Fig. 4.1 have the characteristic and canonical shape of “swallows” or “shrimps”

for two–parameter maps as has been discussed earlier (15; 16; 17). The organization of such stable

regions is around superstable orbits (17) as will be discussed in the nextsection.

The magnetization (7; 8) is the average phase along the trajectory,

Φ = lim
N→∞

1
N

N
∑

i=1

sgn(xi−1 − xi), (4.2.3)

which, in the present case, is also the averaged, scaled driving. This quantity, which has been

examined in a number of recent studies (7; 8), has been shown to providea different measure of

detecting ordering in chaotic dynamics (7; 9). Together,λ andΦ provide a classification of the

different types of motion in nonlinear dynamical systems (7; 18). Fig. 4.2 displays the different

phases, namely regions where the magnetization takes distinct values. Note that for periodic motion

of period M or for chaotic motion inM bands, the magnetization takes valuesΦ = K/M, where

K(< M) depends on the itinerary of the orbit.

Along the axisε′ = 0, the system degenerates to the single logistic mappingx→ αx(1− x) ≡
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Figure 4.1: Regions of chaotic dynamics (white) and periodic motion (black) inthe α, ε′ plane.
The system reduces to the single logistic map on the lineε′ = 0. There can be stable motion for
particularα aboveε′ = 1 but we do not consider this here.
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f (x), for which the entire phenomenology, both qualitative and quantitative, are very well known

(19). We recall some of the main features that are of relevance in the modulated system.

• The cascade of period–doubling bifurcations accumulates atαc = 3.569946. . ..

• A band–merging crisis occurs atαm = 3.678857.., when there is a transition from a two–band

attractor to a single–band chaotic attractor. This occurs when

f (3)(
1
2

) = 1− 1
α

(4.2.4)

namely when the unstable period–1 orbit coincides with the third iterate of the mapmaximum,

and signifies the end of the inverse period–doubling cascade.

• All the purely odd periods occur in the rangeαm < α ≤ αt ≡
√

8 + 1, the period–3 orbit

being created at the tangent bifurcation that occurs atαt. Below αm, the periodic windows

have periods of the formk = m · 2 j j = 1,2 . . ..

• In each periodic window of periodk, there is a superstable orbit, namely one where the map

maximum is an element:

f (k)(
1
2

) =
1
2
.

The itineraries of the superstable periodic orbits can be described symbolically through the

U-sequences (10), which encodes the iterates of the map maximum falling on the right (R) or

left (L) of the maximum.

• Below α = αm the magnetizationΦ is zero while aboveαm, in each periodic window of

period k the magnetization takes a value that is an integral multiple of1
k . The fractional

nature of the magnetization is unrelated to the nature of the dynamics (which canbe chaotic

or periodic), but relates to the geometry of the attractor, the number of distinct bands on which

the dynamics occurs and the order in which they are visited.

With modulation, many of the above features are preserved, at least for small ε′. Thus periodic

windows continue into the phase plane forε′ > 0, although as can be seen in Fig. 4.1, there are
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Figure 4.2: The magnetizationΦ in different regions of the phase plane. When the motion is periodic
with periodk or in k bands, the magnetization takes the valuej/k. Regions with different values of
k are coloured distinctly.

many mergings of the periodic windows, as well as the creation of entirely newregimes of stability.

Most notable (see Fig. 4.2) is the creation of a large stable zone of period 5, as also, in comparison

to the width of the periodic windows atε′ = 0, large zones of other odd periods.

Thus one major effect of the modulation appears to be thestabilizationof periodic dynamics.

Application of an appropriate amplitude of modulation can stabilize any desired period (within a

range), and thus this is a technique for the control of chaos. Our interest here, however, extends to

the actual nature of the dynamics and the bifurcations that occur in the system. These are discussed

in Section 4.3.4.
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4.2.1 One–dimensional analysis

Since one eigenvalue of the Jacobian is always zero, it is possible to analyse the present system in

terms of the theory of 1–d unimodal maps. Note that each orbit of Eq. (1),

O : x0, x1, x2, . . . , xi , . . . (4.2.5)

can be additionally characterised by the ‘sign-sequence’, namely the sequence of the signs (±) of

the modulation,

S : s0, s1, s2, . . . , si , . . . si = sgn(xi−1 − xi) (4.2.6)

A periodic orbit will necessarily have a periodic sign sequence. The correspondence is not 1-1:

many different orbits could have the same sign sequence, and chaotic orbits can also have periodic

sign sequences. Not all sign sequences will be permitted since the mapf is unimodal (see below).

Keeping in mind the limitε → 0, where the symbolic dynamics for all orbits is well known, it

is useful to consider the present system as the effective “1–dimensional” mapping

xn+1 = f±(xn), (4.2.7)

with the functionsf+(x) = (α+ε)x(1−x) or f−(x) = (α−ε)x(1−x) chosen according to the permitted

sign-sequence. The advantage of using this 1-dimensional description isthat the allowed periodic

orbits of the dynamical system, Eq. (1) can be well understood and characterized by extending the

kneading theory for unimodal maps (10) to take into account the switching between the two different

logistic maps. This is discussed in the next section.

4.3 Periodic Orbits and Crises

When the dynamics is governed by a single mapf , a pointx is said to belong to a periodic orbit or

cycle of periodk if

f (k)(x) = x. (4.3.1)



4.3. Periodic Orbits and Crises 53

In the present system, this needs to be generalized since the mapsf− and f+ are applied in a

history dependent manner. Thus a periodic orbit of periodk is determined by the condition

f (k)
s1...sk

(x) ≡ fsk( f (k−1)
s1...sk−1

(x)) = x (4.3.2)

where si is either+ or -, and the sequences1s2 . . . sk corresponds to avalid or permittedsign

sequence, namely a dynamically consistent sequence of the mapsf±. The orbit is stable if, for a

neighbourhood ofx1, the condition

µ =

∣

∣

∣

∣

∣

∣

k
∏

i=1

f ′si
(xi)

∣

∣

∣

∣

∣

∣

< 1 (4.3.3)

is satisfied.

One class of valid itineraries can be deduced from the MSS (10) sequences. Along the line

ε′=0, the system reduces to a single logistic mapping, and the sequence of periodic orbits that occur

can be completely described. For unimodal maps, periodic orbits where the map maximum is an

element of the cycle can be symbolically coded by whether iterates fall to the left (L) or right (R)

of the maximal point (C). MSS described how to construct the symbolic itinerary of any periodic

orbits lying between any other pair of periodic orbits by a simple algebraic procedure (10). An

extension of this algebra which takes into account the dynamical alternation between the mapsf−

and f+ is applicable here. As can be seen from Fig. 1, periodic dynamics on the lineε′ = 0 carries

over for nonzero (but small)ε′. To use the MSS procedure here, it should be recognsied that since

the dynamics uses different maps based on the itinerary, the symbols R, L and C carry subscripts+

or - to denote which of the maps is used to determine the subsequentdynamics. Thus, the period–3

orbit, which has the U-sequence

RL (4.3.4)

on the lineε′ = 0 now necessarily becomes

C−R−L+. (4.3.5)
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For a single unimodal map, there are distinct period–5 orbits with MSS sequences RLR2 and RL2R

respectively. These generalize to C+R−L+R−R− and C+R−L+L−R−. Listed in Table I are all possible

U-sequences that can exist for periodic orbits with period less than 9 between these two period–5

orbits (cf. the Table in Ref. (10) Appendix). Similiar kind of constructions can be carried out

for higher period orbits with additional rules governing permitted symbol (R,L,C) and valid sign

sequences (20).

In addition to the generalizations of the MSS sequences, new sequences become possible which

do not arise in the unimodal system. Such “non-MSS” periodic orbits naturally do not extend from

theε′ = 0 line and can therefore be identified easily from Fig. 4.1. We discuss thesebriefly below.

4.3.1 Superstable and doubly superstable orbits

An orbit of periodk is termedsuperstableif (cf. Eq. (4.3.3))µ = 0 and corresponds to parameter

values (α, ε′) for which the critical point of the map belongs to the orbit. In the present system, the

critical point of eitherf− or f+ being part of the cycle makes the orbit superstable. This imposes

one constraint, and thus the condition for superstability is met along a line (namely codimension 1)

in the (α-ε′) parameter plane. Such lines are denotedMk
j in Fig. 4.3, the subscriptj indexing the

several different such orbits that can occur. It can happen that the critical point of both maps are

elements of the cycle, in which case we term the orbitdoubly superstable(DSS). Such orbits occur

at isolated points (of codimension 2) in the phase plane, and play a crucial role in determining the

nature of the MSS and non MSS sequences that occur in this system.

This is most easily illustrated by the example of period 5 orbits.

4.3.2 Example: Orbits of periodk = 5

The logistic map has 3 MSS itineraries for period 5 orbits at different values ofα. These are,

respectively RLR2, RL2R and RL3.
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In the modulated system these become (see Fig. 4.4(a))

M5
1 : C+R−L+R−R− (4.3.6)

M5
2 : C+R−L+L−R− (4.3.7)

M5
3 : C+R−L+L−L+ (4.3.8)

and they start on the lower boundary of the phase plane, namely atε′= 0. With increasingε′, the

locus ofM5
1 andM5

2 move toward each other (as a function ofα, ε′) and merge at (3.52,0.58), giving

rise to a DSS orbit (Fig. 4.4(b)) with itinerary

D5 : C+R−L+C−R−C+. (4.3.9)

In effect, the DSS orbit is created when the fourth iterates of C+, namely R− in M5
1 or L− in M5

2

move gradually to the left and right respectively, until the points coincide atC−.
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Non-MSS sequences are created out of the DSS point,D5 by the reverse process, namely by per-

mitting the C+ element to go either to the right or the left, thereby making the itineraries (Fig. 4.4(a))

N5
1 : L+R−L+C−R− ≡ C−R−L+R−L+ (4.3.10)

N5
2 : R+R−L+C−R− ≡ C−R−R+R−L+ (4.3.11)

Note that both these would be forbidden in a single unimodal map (in MSS notation, they are RLRL

and R3L).

For the DSS point,D5, we observe that

C− → R− → C+ (4.3.12)

which gives the condition

f−( f−(
1
2

)) =
1
2

(4.3.13)

which is satisfied along thejoining line, J2
−. A family of DSS points (see Fig. 4.3) occur at the

intersections of this and linesJk
+ which connect C+ and C− in k steps, as for instanceJ3

+,

C+ → R− → L+ → C− (4.3.14)

which is specified by

f+( f−( f+(
1
2

))) =
1
2
. (4.3.15)

DSS points of orderm+ k occur at intersections of eitherJk
+ andJm

− lines (see Fig. 4.3 for the point

D6) or Jm
+ andJk

−.

4.3.3 Crisis lines

The band–merging crisis in the logistic map occurs when the third iterate of the mapmaximum

coincides with the unstable period–1 fixed point; see Eq. (4.2.4). Since the maps f− and f+ are used
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in a history dependent manner for nonzeroε′, this generalizes to

f+( f−( f+(
1
2

))) = 1− 1
α − ε (4.3.16)

and this condition is satisfied along the line denotedI3
− in the (α, ε′) plane; see Fig. 4.3. (The

subscript - is indicative of the fact that the third iterate of the maximum coincides with the fixed

point of the mapf−, and the letterI denotes that this is an interior crisis line). In an analogous

manner, one can have other crisis lines, say when thepth iterate of the map maximum coincides

with the period–1 fixed point of the mapf−,

I p
± : f (p)

s1s2...sp
(
1
2

) = 1− 1
α ± ε , (4.3.17)

s1 . . . sp being a valid sign sequence as discussed earlier.

The crisis lines and the DSS points, along with the MSS and non MSS orbits organize the

dynamical behaviour of this system. Table II lists (the lowest order) lines that form the skeleton of

the pattern present in the parameter space.

4.3.4 Period incrementing bifurcations

At fixed α, whenε′ increases, the nonlinearity parameter in the mapf+, namelyα + ε, increases,

while that in f− decreases. These can lead to competing effects of stabilization throughf− and

destabilization throughf+. Chaotic motion can only occur ifα + ε exceedsαc= 3.569946. . . (the

lower left region of stability in Fig. 4.1 is defined byα+ ε ≤ αc) but whether the dynamics is stable

or unstable will depend crucially on the history of a given orbit. In the present system we have not

observed any dependence of the asymptotic dynamics on the initial conditions.

An expanded view of the region 3.1 ≤ α ≤ 3.7, 0 ≤ ε′ ≤ 0.6 is shown in Fig. 4.5. The

prominent feature of this region of the phase diagram is the merging of periodic windows at nonzero

ε′. At these window mergings, there is aperiod incrementingbifurcation: the windows that merge

correspond to periodsp−1 andp, wherep is odd. Since all odd periods in the logistic map (namely
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on the lineε′ = 0) can occur only to the right ofαm, and even periods which are of the form 2m · j

can occur only to the left, the respective windows in the modulated system originate to the right and

left of αm. The merging of these periodic windows occurs, as can be seen, along the crisis lineI3
−.

In each of the windows, there are superstable orbits and for these we can write the condition for the

period incrementing bifurcation as the simultaneous occurrence of

f+( f−( f+(
1
2

))) = 1− 1
α − ε (4.3.18)

and

f (p)
s1...sp

(
1
2

) =
1
2

(4.3.19)

where the valid sign sequence is such thats1s2s3 ≡ +−+. At the merging of the period 6 and period

7 orbits, for instance, the respective orbit itineraries are

C+R−L+R−R+R− and C+R−L+R−R−R+R−. (4.3.20)

In Table III the extended MSS sequence for orbits in a period–incrementing bifurcation are listed.

This is for the main families of windows (with periods less than or equal to 9) thatmerge along the

line I3
−. There are many families of period incrementing bifurcations, all of which occur along the

lines Im
− for differentm; I3

− andI5
− are indicated on Fig. 4.3. At the merging of the periodp andp+1

windows on the crisis lineIm
− , the superstable orbit has the condition

f (p−m)
sm+1...sp

(1− 1
α − ε ) =

1
2
. (4.3.21)

The reverse bifurcation, where the period decreases by one, can also occur, and does so by the

reverse of the above mechanism. It should be mentioned that this bifurcationdiffers from period–

adding (21) as well as from the border–collision bifurcation (22). In thelatter case, there is a

transition from periodp to periodm, all points of the periodic orbits collapsing onto an stable

periodic point at the border (22). The period incrementing (or decrementing) bifurcation islocally
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Figure 4.6: Log-log plot of〈ℓ〉 versusr. The straight line passing through the data has slopeθ ≈
0.08.

similar to border–collision in that two elements of the periodic orbit become three (or vice–versa),

R−R+ → R−R−R+.

4.4 Intermittency

Here we examine the characteristics of the intermittent dynamics that is observed in this model.

As has been noted already, compositions of the maps are non–Abelian sincef+( f−(x)) , f−( f+(x))

and this can give rise to nonstandard dynamical behaviour. We study the tangent bifurcation that

gives rise to the period 5 orbit atα=3.25 though our observations hold for other ranges of parameter

values as well.

At α = 3.25, one regime of intermittent motion occurs forε′ just belowε′c ≈ 0.8225. . . . while

aboveε′c, there is a period–5 cycle. A characteristic of any intermittent dynamics is the scaling

behaviour of the average length of the laminar region,ℓ, namely

〈ℓ〉 ∼ 1
rθ

(4.4.1)
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wherer ≡ (ε′c − ε′) is the parametric distance from the tangent bifurcation. For the standard Type I

intermittency (23) the exponentθ = 1
2.

For the present system we find that the average length of the laminar regiondoes not vary with

r, and instead (see Fig. 4.6) follows the law

〈ℓ〉 ∝ 1
rµ
, µ ≃ 0. (4.4.2)

Such lack of sensitivity to the tangent bifurcation is unexpected, especiallysince the return map

for the dynamics appears to have the canonical Type-I form in the neighborhood of the tangency,

namely

yn+1 = yn + pyn
2 + qr (4.4.3)

wherep andq are constants andyn is the distance ofxn from the tangency point. This map can be

viewed as the differential equation
dy
dℓ
= ay2 + r (4.4.4)

and the length of the laminar region is the number of steps (ℓ) taken to cross the bottleneck neary=

0 and is found from

ℓ =

∫

dℓ =
∫ c

−∆

dy

ay2 + r
(4.4.5)

=

√

1
ar

[tan−1

√

a
r

c+ tan−1

√

a
r
∆] (4.4.6)

If r is sufficiently small and∆ > 0, with
√

a
r ≫ 1, then

ℓ =
π
√

ar
(4.4.7)

This argument can be generalized to the case of the nonlinear term in Eq. (6.0.1) beingy2δ
n , when

one obtainsℓ ∝ r−(1− 1
2δ ).

This reasoning breaks down in the present case due to the nature of the detailed dynamics and
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indeed to the unique features of the history dependent dynamics. When considering a periodk

tangent bifurcation in a single mapping,f , it is obvious that the graph off k(x) will be tangent to the

diagonal at thek points of the periodic orbit. Here, on the other hand, each of thek points is a point

of tangency for adifferenteffective mapping. Thus, in the 5-cycle forα=3.25 andε′ = ε′c, the five

points of tangency each arise from a different history and are points of tangency for five separate

maps, each of which is a combination of 2f+’s and 3 f−’s. One of these, namely

g(x) = f−( f+( f−( f+( f−(x))))). (4.4.8)

is shown in Fig. 4.7. As can be seen, there is a single point of tangency; note that the overall

dynamics isnotgoverned byg(x) except in the neighborhood of the tangency since the dynamics is

history dependent. Nevertheless, as we argue, the effect of residual fixed points in such combination

maps crucially affects details such as the reinjection probabilities and thereby the scaling exponents.

(It should be clarified that tangency occurs simultaneously in the five different combination maps at
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ε′ = ε′c.) The fixed point adjoining the tangency point in Fig. 4.7 can have stable cycles around it.

This is different from the intermittency in the standard logistic map.

In the standard Type-I intermittency scenario, forε′ belowε′c the periodic orbit is itself unstable,

but points cycle through the neighborhoods of the fixed points in a consistent manner: iterates leave

the neighbourhood of one point of tangency to go to a second and then to athird and so on. In the

composed mapf (k), points traverse the tangency bottleneck in its entirety.

This need not be the case when the orbit reinjects into the tangency bottlenecks at different

points, as was first noted by Kim, Kwon, Lee and Lee (11). If there is a distribution P(yin) of points

yin, where the trajectory enters the neighbourhood of the tangency then the laminar length would

have to be

〈ℓ〉 =
∫ c

−∆
ℓ(yin, c)P(yin)dyin (4.4.9)

with the normalization

∫ c

−∆
P(yin)dyin = 1 (4.4.10)

For everyyin, Eq. (7.1.1) yields

ℓ(yin, c) =
1
√

ar
[tan−1

√

a
r

c− tan−1

√

a
r

yin] (4.4.11)

With a flat distributionP(yin) = 1
c+∆ , we have from Eq. (7.1.3)

〈ℓ〉 = 1
2a(c+ ∆)

ln

[

r + ac2

r + a∆2

]

+
∆

√
ar(c+ ∆)

[tan−1

√

a
r

c+ tan−1

√

a
r
∆]. (4.4.12)

In Eq. (4.4.12), for smallr, the first term on the right has nor dependence. When reinjection occurs

from below,∆ > 0 and the tangency bottleneck is fully traversed; the second term gives theleading
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r−1/2 dependence. However, when∆ is negative, then the two inverse tangents cancel each other for

very smallr (each is equal toπ/2 in magnitude, but the signs differ) resulting in behaviour observed

in Fig. 4.6.

From Figs. 1 and 2 it is apparent that period–5 intermittency occurs over arange ofα around

3.25. We have observed that for higherα the exponentθ eventually becomes12, the crossover being

controlled by the details of the reinjection dynamics (24). The nonstandard reinjection behaviour

is not maintained at all tangent bifurcations in this system; the exponents can revert to the standard

Type I case upon variation of parameters.

4.5 Discussion and summary

The parametrically modulated logistic map has been extensively studied for specific forms of driv-

ing which include the cases of periodic (26), quasiperiodic (27; 28), aswell as stochastic forcing

(29). The different dynamical phenomena that obtain in the logistic map are modified under the

influence of driving in interesting ways, leading frequently to novel bifurcations and attractors with

unexpected dynamical and structural properties (30). Our choice of delayed feedback modulation

makes the dynamics non–Abelian, and since the choice of (noninvertible) mapdepends on the his-

tory, the system is deterministic and also non-Markovian. These new features give rise to novel

dynamical features.

The zones of dynamical stability have a complicated and hierarchically organized structure.

These are well–understood, having the canonical shape for stability regions in two–parameter map-

pings (15; 16; 17). Our main method for understanding the organization ofperiodic orbits in such

driven systems is through a generalization of the results of MSS (10) for the organization of periodic

orbits in unimodal maps, and we show how this scheme helps in rationalizing the different periodic

orbits that can arise in the driven system. In addition, we find that there arenon–MSS periodic

orbits, namely the stabilization of “forbidden” itineraries for periodic orbits which results from the

choice of delayed feedback forcing.

There also appear to be regions in parameter space where there are no periodic windows and
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our preliminary studies of the dynamics here have revealed a peculiar characteristic of the attendant

tangent bifurcations. Although they are still of Type-I, owing to the interplay of two different map-

pings in determining the dynamics, the actual mechanics of the re-injection process (11) leads to

the scaling exponents being quite different from1
2.

Dynamics in the case of additive forcing,

xn+1 = αxn(1− xn) + ε sgn(xn−1 − xn), (4.5.1)

is also very similar. The phase diagram in this latter case (not shown here) has identical features—

period incrementing bifurcations, stable shrimp regions, superstable and doubly–superstable orbits,

etc. Much of the analysis presented for multiplicative modulation carries over. Note, however,

that an analogy can be made between Eq. (4.5.1) and a globally coupled map lattice with delay–

feedback, as has been done in other cases of driven dynamical systems (32). Interest in the study of

emergent ordered collective behaviour in coupled maps with delays (33) suggests that this analogy

should be explored systematically.

Delay feedback modulation of the form studied here can be easily realized inexperiment, par-

ticularly in electronic circuits (34). There are standard procedures forintroducing time-delays, and

the Schmitt trigger provides a simple means of comparing two signals to obtain a digital output with

the desired phase (12); this can then be fed back into the system as in Eq. (4.5.1).

However, the motivation to examine driven dynamical systems arises from a variety of contexts.

For instance, modulated mappings arise in specific population models, particularly when migration

or other exogenous effects need to be considered (25). Indeed, there have been studies of avariety

of forced systems with dichotomous (13; 14) drives, as well as more complicated driving terms (31).

The analysis presented in this paper can be extended to other pulsed driven systems. In particular,

quasiperiodic driving can be approached systematically as the limit of periodic pulses of increasing

period; studies of such modulation are presently under way (20).
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Table I: Extended MSS sequences for periodic orbits with period≤ 9 between the period 5

orbitsM5
1 andM5

2.

Periodk Itinerary Notation

5 R−L+R−R− M5
1

9 R−L+R−R−L+R−L+R− M9
1

7 R−L+R−R−L+R− M7
1

9 R−L+R−R−L+R−R+R− M9
2

8 R−L+R−R−L+R−R− M8
1

3 R−L+ M3

6 R−L+L−R−L+ M6
1

9 R−L+L−R−L+R−R−L+ M9
3

8 R−L+L−R−L+R−R− M8
2

9 R−L+L−R−L+R−R+R− M9
4

7 R−L+L−R−L+R− M7
2

9 R−L+L−R−L+R−L+R− M9
5

8 R−L+L−R−L+R−L+ M8
3

5 R−L+L−R− M5
2
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Table II : Notation used to describe lines in parameter space along which the phase diagram

is organized. The subscripts on C, R and L indicate which map,f±, determines the dynamics and

F± = 1− 1
α±ε .

Mk is indicative of superstable periodk orbits which follow the MSS pattern.

Ik
± denotes interior crisis analogues where the map maximum iterates to the period-1point of

the mapf± in k steps.

Jk
± orbits connect C+ (or C−) to C− (or C+) in k steps.

Nk orbits are superstable periodk orbits which are Non-MSS.

Itinerary Orbit equation

I3
− C+R−L+F− f+( f−( f+(1

2))) = (1− 1
α−ε )

I5
− C−R−R+R−L+R−F− f+( f−( f+( f−( f−(1

2))))) = 1− 1
α−ε

I6
− C−R−R+R−L+L−R−F− f−( f+( f−( f+( f−( f−(1

2)))))) = 1− 1
α−ε

I4
− C−R−L+L−R−F− f−( f+( f−( f+(1

2)))) = 1− 1
α−ε

J3
+ C+R−L+C− f+( f−( f+(1

2))) = 1
2

J4
+ C+R−L+L−C− f−( f+( f−( f+(1

2)))) = 1
2

J2
− C−R−C+ f−( f−(1

2)) = 1
2

M3 C−R−L+ f+( f−( f−(1
2))) = 1

2

N5
2 C−R−R+R−L+ f+( f−( f+( f−( f−(1

2))))) = 1
2

C−R−L+R−L+

N6
2 C−R−R+R−L+L− f−( f+( f−( f+( f−( f−(1

2)))))) = 1
2

C−R−L+R−L+L−

Table III : Extended MSS sequences for periodic orbits with period≤ 9 about the interior crisis

line I3
−. The windows for periodp and p + 1 orbits merge at the period–incrementing bifurcation;

these share identical extended MSS itineraries in the first 3 and lastp− 4 positions, with the higher

period orbit having an additional R− point.
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Periodk Itinerary Notation

8 R−L+R−R+R−L+R− M8
4

6 R−L+R−R+R− M6
2

8 R−L+R−R+R−R+R− M8
5

9 R−L+R−R−R+R−R+R− M9
6

7 R−L+R−R−R+R− M7
3

9 R−L+R−R−R+R−L+R− M9
7



Chapter 5

Period adding bifurcation in a one

dimensional map

In a strikingly simple experiment(1) performed recently, a sequence of period adding bifurcations

were observed. Period adding bifurcations have been seen quite frequently of late but these systems

have been of the neurobiological variety (2)-(4), electrical circuits (5) and pulsing lasers(6)-(7). In

the work of Colli et al., it is bubble formation in a liquid which was studied. The bubbles were

caused by a constant airflow into the liquid. It is the time intervalxn between consecutive bubbles

which was of interest. Empirically one could writexn+1 = f (xn). A map was actually suggested for

the process. The experiment was done as follows:

A cylindrical tube is used as the bubble column.The bubbles are issued by injecting air through a

metallic nozzle submerged in a viscous fluid and the liquid is maintained at a fixed height. The

nozzle is placed with its tip well below the liquid surface to avoid wall effects on the forming

bubble. The nozzle is attached to a small air chamber. Air from a compressoris injected to a

capacitive reservoir and a proportionating solenoid valve controlled by aPID controller sets the air

flow to the chamber under the nozzle. The flow rate is measured by a flow-meter.[Fig5.1]

In order to study the influence of the pneumatic system in the bubble formation dynamics, a hose is

connected from the solenoid valve to the chamber under the nozzle, keeping fixed the influence of
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Figure 5.1: Experimental apparatus for bubble formation with the flow-meter (Fl), the controller (C)
and the solenoid valve, representing the control loop of the air flow rate, and the hose (h) between
the valve and the chamber under the nozzle.

the other elements of the pneumatic system. Four different hose lengths were used to see the effect

of change of hose length on bubble formation. The detection system is based on a laser-photodiode

with a horizontal He-Ne laser beam focused on the photodiode placed above the nozzle. The time

interval between successive bubbles is measured by time circuitry insertedin a PC slot.

E. Colli looked at the time series of time intervalsxn between successive bubbles and investigated

the correlation between two successive time intervals. Experimental results have shown that the

sequencexn is not necessarily constant. Stable periodic regimes of high period and chaotic regimes

appeared. Period adding bifurcation was also observed for certain hose lengths with varying air flow

rates.

By looking at the period adding sequence obtained in the experiment and theproposed map, we

thought that it should be possible to explore this sequence in a different fashion. Considering the

fact that a long pipe length and a high air flow rate are necessary for the period adding process, we

noticed that the Reynold’s number would be high in this region and accordingly, we thought that a
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fully chaotic map could be relevant to start with. The fact that the system is dissipative implies that

a low order system would be reasonable to describe the dynamics. Period doubling or intermittency

in a Navier Stokes fluid were modeled by the logistic map with the general controlparameter r

[ie. xn+1 = rxn(1 − xn)], which is a good choice for studying the universal features associated

with the phenomena. In this particular case the phenomenon is period adding and this simple map

cannot show period adding bifurcation. We thought a variation of the logistic map should be a good

candidate to generate and explain this phenomenon. Accordingly, we propose to model the system

by

xn+1 = 4xn(1− xn) if xn < xn−1

xn+1 = rxn(1− xn) if xn > xn−1

This particular choice gives us an added advantage. Recently much workhas been devoted to

neurobiologically motivated relaxation oscillators. These oscillators almost always show a sequence

of period adding phenomena in their very rich bifurcation patterns. In all such cases the period

adding comes from piecewise smooth maps (8)-(10). In fact the map proposed by Colli et al. to

describe their system, namely

fl,φ(T) = −φ + { greatest root of t→T +m[t − d(T)]3 − l[t − d(T)]} (5.0.1)

also has the feature of piecewise continuity because the chosen root of the cubic equation switches

in a discontinuous manner. We have tried to show in this chapter that similar scenarios (8)-(10) can

also be achieved by modulating the control parameter in a 1-D map.
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5.1 The model

With this in mind, we have introduced a logistic map (11)-(12) where the non-linearity parameter is

modulated by a history dependent feedback. We can introduce modulation inthe general form:

xn+1 = [r0 − (4− r0) tanh (
xn − xc

ε
)]xn(1− xn) (5.1.1)

where we can takexc as

(i) some definite predefined value. or

(ii) xc = xn−1, so that the next step of the dynamics depends on the previous step. This way the

dynamics of the map becomes history dependent.

We explored in detail the limitε → 0. In that limit the hyperbolic tangent function becomes a step

function. We note that the limitsxn → xc followed byε → 0 andε → 0 followed byxn → xc do

not commute. For our practical purpose, we need the orderε→ 0 followed byxn→ xc. In this case

the limit of the hyperbolic tangent can be±1. We chose the value+1, keeping in mind that control

of chaos is what we are after.

In the following bifurcation diagramsxn is plotted againstr0 and not against r as the bifurcation

diagram with respect tor0 captures the r=4 dynamics explicitly.

For case (i)xc = 0.5 [Fig 7.1(a)] is a reasonable cut-off though a vast range ofxc can be used to

achieve period adding bifurcation [Fig 7.1(b)-7.1(d)]. It shows the strength of our model.

Case (ii) shows period adding cascade in a more elegant way. It seems to be a better model for

bubble formation dynamics as there is no predefined cut-off in the experiment.

In this scenario, Eq(6.0.1) takes the form:

xn+1 = 4xn(1− xn) if xn < xn−1

xn+1 = rxn(1− xn) if xn ≥ xn−1 (5.1.2)



5.1. The model 76

(a) (b)

(c) (d)

(e)

Figure 5.2: (a)Bifurcation diagram of the memory coupled logistic map with predefined cutoff
xc = 0.5 in the limit ε → 0. (b-d)Bifurcation diagram for case(i) for different values of cutoff;
xc=0.2, 0.4 and 0.6 respectively. Both axes are plotted in log scale. x axis is plotted as log(r0-2) and
y axis as log(xn). (e)Bifurcation diagram withxc =

1
2, axes are in natural scale.



5.2. Exploration of dynamics 77

wherer = (2r0−4). For r=4, the logistic map is fully chaotic while forr < 3, it shows a stable fixed

point. We want to point out that the system that has been much studied is

xn+1 = (r0 + gn)xn(1− xn))

wherer0+gn is never greater than four andgn can have various complicated forms but it has always

been local (13)-(14). Our departure from the usual practice is that our gn is memory dependent(12).

5.2 Exploration of dynamics

We begin by exploring the dynamics of the map

xn+1 = f1(xn) = 4xn(1− xn) if xn < xn−1 (5.2.1)

xn+1 = f2(xn) = rxn(1− xn) if xn > xn−1 (5.2.2)

with 0 < r < 4. Without the memory dependence, the logistic mapxn+1 = 4xn(1 − xn) is fully

chaotic with a Lyapunov index of ln(2) and an invariant density distribution which is continuous in

0 ≤ x ≤ 1. The mapxn+1 = rxn(1− xn), by itself shows fixed points forr < 3 followed by cycles

of period 2n and so on. In the presence of memory, the above map does not begin with a fixed point

but with a 2-cycle. We can qualitatively see the existence of it by noticing thatfor r < 1, xn+1 will

be smaller thanxn if we use Eq(7.1.2) and then Eq(7.1.1) will have to be used at the next step and

xn+2 > xn+1 which forces the use of Eq(7.1.2) at the next step. Thus, we have a possible 2-cycle

x1,x2 with

x2 = 4x1(1− x1) (5.2.3)

x1 = rx2(1− x2) (5.2.4)
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We see immediately that

x2 = 4rx2(1− x2)(1− rx2(1− x2)) and (5.2.5)

x1 = 4rx1(1− x1)(1− 4x1(1− x1)) (5.2.6)

Thusx1 andx2 are the fixed points of two iterated functions F(x) and G(x) given by

F(x) = 4rx(1− x)(1− 4x(1− x)) (5.2.7)

G(x) = 4rx(1− x)(1− rx(1− x)) (5.2.8)

These functions have zero as the stable fixed point forr < 1
4. The two cycle elements will be non

zero forr > 1
4 and can be found from Eq(5.2.7) and Eq(5.2.8) and the cycle will be stableso long as

the slopes of F(x) and G(x) at the fixed point are greater than -1. Destabilization through a pitchfork

bifurcation occurs at (using F(x))

−1 = 4rc[1 − 8xc(1− xc)][1 − 2xc]

which leads to

1− 2xc =
1− 2rc +

√

4r2
c + 4rc − 9

2(4rc − 5)

using Eq(5.2.7) atxc andrc, we substitute forxc from above and findrc =
√

160−4
8 ≃ 1.113. Above

r = rc, the 2-cycle bifurcates to a 4-cycle and then to 8-cycle. These bifurcations are supported by

a numerical analysis. Near r=1 there is another possible fixed point solution. For restricted basin of

attraction we get a stable solution off2(x) = x. This solution is stable forr < 3 and atr0 = 2.7460

the basin of attraction for this fixed point collides with that of the period 8-cycle and crisis occurs.

After that we see only the fixed point attractor.
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5.3 Period adding bifurcation

We note that r=2 is going to be interesting. At r=2, The map of Eq(7.1.2) has the feature that all

initial conditions less thanxn =
1
2 are going to yieldxn+1 > xn but will not crossxn+1 =

1
2. This

means that such points will be repeatedly iterated by the map of Eq(7.1.2) and will reach the fixed

point x = 1
2. However, initial conditions starting atxn >

1
2 will yield xn+1 < xn and the next iteration

will use the map of Eq(7.1.1) which will obviously yield an iteratexn+2 > xn+1 forcing the map of

Eq(7.1.2) at the next stage. The new input may or may not be less than1
2 and hence a fixed point

may not be reached. Thus exactly at r=2 some initial conditions lead to a fixed point and some

initial conditions do not. This opens up the possibility that forr = (2 − ε), we may have a fixed

point as the sole outcome of the iteration by Eqs(7.1.1) and (7.1.2).

Beyondr = 2, we need to refer to the complete numerical results shown in Fig 5.3(a). As we go

slightly beyondr = 2, a periodic window of very large period emerges. The period decreases very

rapidly for r = 2+ ε, with ε ≪ 1. The period decrement is through the inverse of a period adding

bifurcation. At every decreasing point, three branches come and meet and two emerge. This gives

rise to a ribbon like structure which is shown in Fig 5.3(b).

Period adding phenomena was extensively studied in the context of switching circuits through bor-

der collision bifurcation(15)-(18). This is a common form of bifurcation when the dynamical system

can be modelled by a set of piecewise smooth maps. One dimensional piecewisesmooth maps can

be defined in the following way

xn+1 = f (xn; µ) =































g(xn; µ) if xn ≥ λ

h(xn, µ) if xn ≤ λ
(5.3.1)
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In the limit ε→ 0 our model Eq(6.0.1) can be cast in this form ifxc is taken to be some predefined

constant. We can write down our system in the following form

xn+1 = f (xn; µ) =































g(xn) = 4xn(1− xn) if xn < xc

h(xn; r0) = (2r0 − 4)xn(1− xn) if xn ≥ xc

(5.3.2)

Now border collision occurs when the fixed points of the smooth maps cross the borderxn = xc.

For first mapx∗L =
3
4 and it cannot cross the border, although the fixed point of the second map

(xn > xc) x∗R =
2r0−5
2r0−4 can cross the border asr0 is varied. Whenx∗R collides with the borderxn = xc

bifurcation occurs. The fixed point gets stabilized and a chaotic band emerges. Forxc =
1
2 the

collision occurs at

x∗R = xc =
1
2

;
2r0 − 5
2r0 − 4

=
1
2

; r0 = 3

Which we can verify by Fig[7.1(e)]. The higher periods also gets unstable by the same process. For

x∗L > xc no fixed point is possible and only a chaotic band is possible.

Two dimensional piecewise smooth maps can be expressed as

g(xn; yn; µ) =































g1(xn; yn; µ) if xn, yn ∈ RA

g2(xn; yn; µ) if xn, yn ∈ RB

(5.3.3)

where the border divides the map into two regionsRA andRB. In the limit ε→ 0 andxc = xn−1 our
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system can also be represented as a set of two dimensional piecewise smooth maps.

yn+1 = xn

xn+1 = 4xn(1− xn) if xn < yn (5.3.4)

and

yn+1 = xn

xn+1 = (2r0 − 4)xn(1− xn) if xn ≥ yn (5.3.5)

where the border isyn = xn. Now the fixed points of the first map as well as second map are

xn = xn−1 = yn. All the fixed points lie on the border, so border collision does not happen.

As we move towardsr = 2 from above, the distance between two consecutive nodes decreases. If

we define the quantity

δ = lim
n→∞

rn − rn−1

rn+1 − rn
(5.3.6)

wherern is the value of r at which an (n-1) cycle goes to an n-cycle, thenδ converges to 1.414. We

now explain how this happens.

In the ribbon like structure, every node is a fixed point of the return mapsf n−6
2 ( f ( f2(xm))) and

f n−6
2 ( f2( f (xm))), where n denotes the number of cycles executed at that particular value of r and

f (xm) is a composite function off1(xm) and f2(xm). Convergence of the fixed point from left to right

at the nodes ensures that these nodes are also fixed points off2(xm). So for each node

f n−6
2 ( f2( f (x∗m))) = f2(x∗m) = x∗m (5.3.7)

i.e. x∗m = 1− 1
r , and hence

f n−6
2 ( f2( f (1− 1

r
))) = 1− 1

r
(5.3.8)
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xn

r0

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5
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 0.7
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-6 -5 -4 -3 -2 -1

0log(r −3)

xn

(b)

 0.52

 0.525

 0.53

 0.535

 0.54

 0.545

 0.55

 0.555

 0.56
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 0.57
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log(r −3)0

xn

(c)

Figure 5.3: (a)Bifurcation diagram of the memory coupled logistic map. (b)Near r0 = 3 (i.e. r=2)
we see the ribbon like structure. The box is enlarged in the next (c) figure.

gives the r-value for the nodern at thenth cycle. But Eq(5.3.8) can be decomposed as

[

f n−7
2 ( f2( f (1− 1

r
))) − (1− 1

r
)

] [

r f n−7
2 ( f2( f (1− 1

r
))) − 1

]

= 0 (5.3.9)

where the first factor gives the solution for the n-1 cycle and the secondproduces the new (nth) node.

So Eq(5.3.8) gives all the nodes up to the nth order.

We get the value of r for the nth node (rn) from

r f n−7
2 ( f2( f (1− 1

r
))) = 1 (5.3.10)
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If for n=N the period adding phenomenon stops, then

r f N−6
2 ( f (1− 1

r
)) = 1 (5.3.11)

and also

r f N−5
2 ( f (1− 1

r
)) = 1 (5.3.12)

when period adding stopsrN → rN+1, then Eq(6.3.5) and (6.3.6) give

rN f2(
1
rN

) = 1 (5.3.13)

which givesrN = 2. So atr = 2 the period addition phenomenon stops. It clarifies the bifurcation

diagram.

By finding the rootsrn we can find the ratioδ of Eq(5.3.6). Also we can findδ in the following way;

Near r=2 let rn = 2+ ∆n,then

rn
n∆

2
n = 1 (5.3.14)

rn+1
n+1∆

2
n+1 = 1 (5.3.15)

wherern ≈ rN. This gives

δn =
∆n − ∆n−1

∆n+1 − ∆n
(5.3.16)

Soδn =
√

rN =
√

2. For a large n, our numerical result supports this analysis.[Fig 5.4]

Beyondr = 2.5427, there is a chaotic band with the emergence of a periodic window atr = 2.7244

[Fig 5.5(a)]. For 2.7564≤ r ≤ 2.7876, we see a cycle of period 11. Each element of the eleven

cycle exhibits a sequence of period doubling bifurcation forr < 2.7564 andr > 2.7876. For one

particular element of the 11-cycle the two sets of bifurcations on either side isshown in Fig 5.5(b).

As we further increase the value ofr, there are two large periodic windows. Atr = 2.9499,

a 6-cycle is formed. Period-6 fixed points bifurcate and take the period doubling route to chaos.
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δ n
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 1.42

 0  50  100  150  200  250  300
no of periods

Figure 5.4: Numerical measure ofδn. for large n it merges with the solid lineδn =
√

2.

r
0

xn

(a)

r0

xn

(b)

Figure 5.5: (a)Rich dynamical structure after inverse period adding stops.(b)Period doubling route
to chaos in 11-cycle.

Like in a logistic map a period 3-cycle is formed and takes intermittent route (19)-(21) to chaos.

At r = 3.8384 period-3 becomes stable and goes through period doubling bifurcation. In between

various other periodic windows can be seen.

We applied static as well as random perturbation to the system. Under static perturbation;

xn+1 = rxn(1−n) + η (5.3.17)

the map still remains at a fixed point off2(xn) for r < 2 as the perturbation decreases quadratically

over the iteration. For dynamic noise the map depends on the perturbations oftwo consecutive steps

linearly and the equality condition (xn+1 = xn) fails for r < 2. We get a replica of period adding

bifurcation forr < 2. [Fig. 5.6]
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Figure 5.6: Bifurcation diagram with dynamic noise.

5.4 Disscussion

In closing we note that if we introduce a memory dependence on the logistic map,then it is possi-

ble to reduce the completely chaotic behavior of the first map [xn+1 = 4xn(1− xn)] to a controlled

periodic orbit for low values ofr. We also note that many scenarios that are generally modeled by

piecewise smooth maps (8)-(10) can also be done by this method. With recentexperiment (22) it

is possible to simulate a logistic map exactly and hence this class of systems. Asr is increased

[Eq(6.0.2)] there are bifurcations in the memory dependent map with two striking features in the

course of the bifurcations. One is the sudden collapse of a eight cycle to the fixed point which

continues to be stable asr approaches from below and the other is the sequence of period adding

bifurcations forr > 2 which approaches the infinite period limit asr approaches 2 from above. The

mechanism of period adding bifurcation for the system under memory modulationis quite different

from border collision. We note that the number expressing the bunching ofr as successive period-

adding occurs is distinctly different from the corresponding number for the period adding route of

Yin Shui Fan and Teresa Ree Chay (23). This difference is because of the different mechanisms for

the period adding in the two cases.
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Chapter 6

Two dimensional discrete dynamical

systems under memory modulation

In ecology, there are some species whose population goes from generation to generation, for ex-

ample, gypsy moths or any of many other species of insects. These topics are usually modelled by

difference equations, iteration map or discrete dynamical systems. A famous discrete model (1) is

the following logistic difference equation

xn+1 = rxn(1− xn) (6.0.1)

which describes evolution of the population of a single species in discrete time,where r is a number

describing the fertility rate of the species andxn denotes the population density of the n-th generation

of the species. This can be expressed by saying that the population in anygeneration depends only

on the population in the previous generation. This discrete model shows muchricher dynamics than

its continuous counterpart
dx(t)

dt
= rx(t)(1− x(t)) (6.0.2)

The logistic map of Eq(6.0.1) shows rich dynamical structures such as chaos, intermittency and

various bifurcation which cannot be observed in lower dimensional continuous systems. Simplicity

88
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of difference equations helps us to understand the dynamical systems in a greaterdepth. These

difference equations also serve as important models for modulation of chaos, ie. control and en-

hancement of chaos. In our present work we study the two dimensional predator prey dynamics

(2)-(6) suggested by the famous Lotka-Volterra equations

dx(t)
dt

= εx(t)[1 − y(t)] − αx(t)2 (6.0.3)

dy(t)
dt

= −εy(t)(1− x(t)) (6.0.4)

where x(t) is the population density of the prey and y(t) is the population density of the predator at

time t. The dynamics of the prey population is logistic growth and the intrinsic growthrate isε in

the absence predators.The functional response, the number of prey individuals consumed per unit

area per unit time by an individual predator, is the functionαx. The natural death rate of predator is

ε. In the aboveε , α both are positive constants.

6.1 Discrete Lotka Volterra dynamics

We are interested in the discrete form of this equation as the discrete dynamicsis much richer and

can lead to chaotic dynamics (2). In Euler scheme, taking the step size to be unity we can discretize

the differential form as

xn+1 = (1+ ε)xn − αx2
n − εxnyn (6.1.1)

yn+1 = (1− ε)yn + εxnyn (6.1.2)

From the point of view of biology the dynamics of the predator-prey systemshould be confined

within the first quadrant ofxn, yn phase plane. To ensure that the initial conditions are taken in such



6.1. Discrete Lotka Volterra dynamics 90

a way that the iterates always remain positive; we need to impose

x0 > (1− 1
ε

) (6.1.3)

y0 < 1+ ε − αx0 (6.1.4)

6.1.1 Fixed points and their stability

The fixed points (x,y) of the discrete Lotka Volterra model can be obtained from the following

equations

x = (1+ ε)x− αx2 − εxy (6.1.5)

y = (1− ε)y+ εxy (6.1.6)

Apart from the trivial fixed point (x=0,y=0) there are two more fixed points, (x = ε
α
, y = 0) and

(x = 1, y = 1 − α
ε
). From biological requirement the third fixed points does not exist forα > ε.

Now from linear stability analysis we can predict their stability. The eigenvalues (λ) for the stability

matrix can be obtained from the following determinant

Ac =























(1+ ε − 2αx− εy) − λ −εx

εy (1− ε + εx) − λ























= 0

For the trivial fixed point (0,0)λ1,2 = 1+ ε,1− ε which makes it a saddle point, as we are interested

in ε > 0. Forε > 2 it becomes a unstable fixed point.λ1,2 = 1 − ε,1 − ε + ε
2

α
for the fixed point

x =
ε

α
, y = 0. As long asε < 2 the fixed points are stable forε < α. Forε > 2 it becomes a saddle

asλ1 < −1 but the other eigenvalue becomes stable forε2 > (ε − 2)α.

The stability analysis of the third fixed point leads to interesting dynamics.λ1,2 = 1 − α
2
±

√
α2 + 4εα − 4ε2

2
. Forα > 2(

√
2− 1)ε the square-root term becomes positive and the eigenvalues

become real. The fixed point becomes stable forε > α . The fixed point becomes a stable spiral for

α = 2(
√

2− 1)ε and remains stable untilα =
ε2

ε + 1
.
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6.2 Bifurcation analysis

At ε = α stability of the fixed point changes. Forε < α (x =
ε

α
, y = 0) is stable but asε > α this

point loses its stability and the other fixed point (x = 1, y = 1− α
ε

) becomes stable. So atε = α the

system goes through a fold bifurcation.

We come across an important bifurcation atα =
ε2

ε + 1
, at this point the amplitude of the eigenvalue

[reiφ] becomes unity and the stable spiral undergoes a Neimark-Sacker bifurcation and invariant

closed curve stabilizes forα <
ε2

ε + 1
. These invariant circles collapse to periodic points through

formation of smaller islands Fig 6.1(d) which then form smaller invariant curves Fig 6.1(e). For

larger values ofε (smallerα) the system leads to chaos Fig 6.1(f).

Under certain parameter constraints the system can also goes through flip bifurcation. We can

find the condition for flip bifurcation taking into account the dynamics in centremanifold. As we

are interested in the local dynamics near the fixed pointxn = 1, yn = 1− α
ε

, we make a coordinate

transform to consider this fixed point to be our new origin.

un = xn − 1

vn = yn − 1+
α

ε

then Eq(7.1.3) can be rewritten as the following

un+1 = (1− α)un − εvn − αu2
n − εunvn (6.2.1)

vn+1 = (ε − α)un + vn + εunvn (6.2.2)

we find out the eigenvaluesλ1,2 =
1
2

[
2− α ±

√
α2 + 4εα − 4ε2

2
], and rewrite Eqs(6.2.1-6.2.2) in

terms of the eigenvectors (pn,qn) of the linear part. By the center manifold theory, we know that

the stability of (0, 0) nearα = f (ε) can be determined by studying at a one-parameter family of
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Figure 6.1: (a)Bifurcation diagram forα = 1.4. We can see a fold bifurcation atα = ε. For
ε = 2.0747 Neimark bifurcation occurs and invariant circles can be seen (b) after that. Different
dynamics are illustrated in (b,c,d,e,f) for corresponding values ofε = 2.1,2.114,2.15,2.25,2.26.
Breaking of invariant circle to small island is clear from (d,e). After this the band is chaotic inter-
mittently separated by few periodic bands. Invariant circles undergoes different bifurcations and the
dynamics becomes chaotic.
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Figure 6.2: Bifurcation diagram whenε is varied withxn. The value ofα is kept fixed at 2.0. A fold
bifurcation can be observed also atε = 2.0.

equations on a center manifold, which can be represented as follows

Wc(0) = {(pn,qn, r) ∈ R3|pn = h(pn, r),h(0,0) = 0,Dh(0,0) = 0}.

Now the coefficient of pn is equal to ‘-1’ for flip bifurcation, which leads to the following condition

to be satisfied.

4ε4 − 8ε3α + (3α2 + 4)ε2 + α3ε − 4εα = 0 (6.2.3)

Forα = 2 this condition is satisfied and we get flip bifurcation forε = 2 Fig 6.2.

6.3 Control of invariant circles to periodic orbits

Memory modulation is an effective way to control chaos and lowering the value of Lyapunov expo-

nents. Though control of chaos has been in the literature the memory modulationtechnique is quite

of late (8; 9). In earlier works (10; 11) we have shown that one dimensional quadratic maps can

be controlled effectively with feedback algorithm using one step memory. One dimensional logistic
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map shows chaotic dynamics forr = 4, Control of chaos emerges through following memory delay

feedback which also leads to additional phenomena.

xn+1 = 4xn(1− xn) if xn < xn−1 (6.3.1)

xn+1 = rxn(1− xn) if xn ≥ xn−1 (6.3.2)

this modulation leads to suppression of chaos for a large range of parameters and is effective in

lowering the local Lyapunov exponent (LLE). We looked at the dynamicsof this discrete predator-

prey model under similar memory modulation. Under memory feedback Eq(7.1.1)and Eq(7.1.2)

gets modified to the following equations;

xn+1 =































(1+ ε)xn − (α0 + β)x2
n − εxnyn if ( xn, yn) > (xn−1, yn−1)

(1+ ε)xn − (α0 − β)x2
n − εxnyn if ( xn, yn) < (xn−1, yn−1)

(6.3.3)

yn+1 = (1− ε)yn + εxnyn (6.3.4)

At α = ε the unmodulated system goes through a fold bifurcation. It would be interesting to see the

dynamics if we take this bifurcation point to be the starting point of modulation, ie.α0 = ε. Now

according to the control algorithm when the system becomes more unstable thedynamics will push

the system towards more controlled dynamics as forα > ε the system has stable fixed point. Now

for small values ofε we get ordered dynamics of period four. With the increase ofε we see more

interesting dynamics Fig 6.5(f). The system shows period adding dynamics which is quite different

from the one we analysed in (11). Here withβ period increases in a continuous manner but there is

no fixed ratio like Feigenbaum constant. In reality the ratio
∆n

∆n−1
of the corresponding width (∆n)

of consecutive two periodn andn− 1 increases slowly Fig[6.3(a),6.3(b)].

We can as well takeα0 to be some other point. Another possibility to takeα0 to be in the periodic

point region of Fig 6.1(a). Then the dynamics is an outcome of the interplay between chaotic
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Figure 6.3: calculation ofδ = ∆n
∆n−1

. (a)δ is calculated when period adding occurs by varyingα. (b)
Numerical values ofδ as period adding happens whenε is changed. In both cases the ratio increases
with higher period.

dynamics and invariant orbits. As the invariant orbits are feeble attractors(Lyapunov exponents

nearly zero) chaotic dynamics supersedes the periodic dynamics and invariant circles only retains

their signature when they are modulated with periodic dynamics Fig 6.3. We can as well control the

dynamics by modulating the value ofε. Then the system takes the form;

xn+1 = (1+ ε
′
)xn − αx2

n − ε
′
xnyn (6.3.5)

yn+1 = (1− ε′)yn + ε
′
xnyn (6.3.6)

whereε
′
= ε0 − γsgn(xn − xn−1). Now from previous analysis Fig 6.1(a) we know when we varyε

at ε = α fold bifurcation occurs and as we increaseε the system undergoes Neimark-Sacker bifur-

cation and eventually to chaos. So when the system moves further from periodic dynamics memory

modulation gives negative feedback and maintains the system in periodic statefor larger range ofε.

This modulation also leads to period adding bifurcation for higher values ofε. For smaller values

system shows periodic dynamics of period four Figs[6.5(e),6.5(f)].

The memory dependent control method is very efficient in controlling chaos and also for putting

the systems from higher periodic state to a lower periodic one. But period adding phenomena is a

outcome of the interplay between the chaotic dynamics and periodic state. Period adding bifurca-
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Figure 6.4: Interplay between chaotic bands and invariant orbits. From unmodulated case Fig 6.1(a)
x0 is taken to be 2.2. This consideration mixes invariant circles with chaotic as wellas periodic
point-bands. This mixing leads to chaotic bands separated by small periodic windows.

tion does not happen when we control non-chaotic attractors. From the corresponding Lyapunov

exponents in Figs[6.5(c),6.5(d)] we can verify our statement.

6.4 Discussion

In this chapter we studied the the dynamical behaviors of the discrete-time prey-predator model,

which is obtained by using the scheme of Euler’s method with step one. We can see that there

exist some parameter values such that the discrete model has a stable invariant cycle. However,

the continuous model does not have limit cycles. We would like to point out thatsome continuous

predator-prey model with functional response has limit cycles. There have been a great amount

of literature on this topics ((6; 7; 12; 13) and references therein). On the other hand, it should be

recognized that the discrete model is derived from the continuous model by Euler’s method, and

not from actual population growth laws. For some parameter values or initialvalues, this model

can have negative values ofx(n) or yn, which have no biological meaning. Therefore, it is a further
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Figure 6.5: Period adding occurs when a strong chaotic attractor interactswith periodic dynam-
ics.Bifurcation diagrams(a,b) and Lyapunov exponents (c,d) of unmodulated discrete Lotka-Volterra
system for two different values ofε is plotted [(c)ε = 0.2,(d)ε = 0.6] with α. Bifurcation diagrams
(e,f) for the modulated system for the same values ofε show that interplay of periodic state with
strong chaotic one leads to period adding.
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study topic in future how propose a reasonable discrete-time predator prey model.

Control of invariant cycle can be done with the same method as with controlling chaos. We showed

memory modulation of the system parameter leads to interesting dynamics such a period adding

which is generally seen where border collision occurs. As discussed in last chapter memory modu-

lation dynamics is different from border collision dynamics and hence worth greater understanding.

Unlike previous chapters we have shown memory modulation method is effective for higher dimen-

sional systems.
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Chapter 7

Controlling dynamical systems by

memory dependent switching: a

variation on the Pyragas scheme

The earliest proposal for control of chaos was prescribed by Ott, Grebogi and Yorke (OGY)(1).

They exploited the presence of an infinite number of unstable periodic orbits(UPO) in the chaotic

state. The idea of OGY was to stabilize a UPO by a small time dependent change inthe control

parameter. The advantage of stabilizing a UPO lies in that it can be done by a small change in the

control parameter (2; 3; 4). However the OGY technique is not efficient for large Lyapunov numbers

and hence a variation was introduced by Pyragas (5). In the two schemessuggested by Pyragas (5)

one requires an external force and the other does not. The one which requires the external force

calls for a complex experimental realization and so we discuss the second scheme. This scheme

introduces a feedback into the dynamical system written as

dy
dt
= P(y, x) (7.0.1)

dx
dt
= Q(y, x)

100
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where (y, x) is a (n+1) dimensional dynamical system andy is the variable that we are focusing on.

They-equation is modified in the Pyragas scheme by a termF(t), whereF(t) = K[y(t − τ) − y(t)],

whereτ is a delay time and we have

dy
dt
= P(y, x) + F(t) (7.0.2)

clearly if τ happens to be periodTi of the ith UPO, the system is unperturbed. The primary effort in

the implementation of the Pyragas scheme is the determination ofτ and K that would stabilize the

chaotic orbit. We show the results of this condition For the Rössler system in Fig 7.4(a) .

In the present work we use a variation on the Pyragas scheme. We couplethe prescription suggested

by Pyragas with the literature on switching in dynamical systems. Our goal is to set up a technique

for controlling the output of dynamical system. Our approach is not restricted to chaotic dynamics

and in reality does not have any significant overlap with the standard switching dynamics because

we use switching in an irregular manner by making it memory dependent. Our prescription is quite

similar with that of Pyragas in using a delay timeτ (though we do not link it to UPO). However un-

like Pyragas we do not use it as a drive. In the spirit of OGY we rather use the delay and switching

to perturb the control parameter. We first exhibit our scheme by using it to control the dynamics of

a damped linear oscillator.

7.1 Memory modulated harmonic oscillator

Periodic orbits (1; 5) arise in both Hamiltonian systems and dissipative ones. The simplest Hamil-

tonian system with a periodic orbit is the simple harmonic oscillator. The frequency of motion is

determined by the constants of the restoring force and the amplitude is determined by initial condi-

tions. For the nonlinear oscillator, the frequency depends on the amplitude and thus on the initial

conditions. If we now add a damping (dissipative system) which in the usual phenomenology is
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proportional to the velocity (linear damping), then the oscillations die out. A negative damping, on

the other hand, would cause the oscillation amplitudes to grow exponentially. Ifwe follow the phase

space nomenclature, then the fixed point at the origin (x = ẋ = 0) is a centre for the conservative

system. It is a stable spiral for a mildly damped oscillator and unstable spiral for the correspond-

ing negative damping. For the dissipative system to exhibit periodic orbits, the damping needs to

be nonlinear. Such periodic orbits are called limit cycles and the amplitude of thelimit cycles are

generally independent of initial conditions. The periodic orbit can also beformed in the dissipative

systems provided the nonlinear dissipation is such that the damping is positive over part of the cycle

and negative over the remainder. This gives an energy balance over the complete cycle. From the

linear to nonlinear oscillator, there is a change in the nature of the fixed pointat the origin when the

motion changes at the origin. This is well exemplified in the Van der Pol oscillator

ẍ+ kẋ(x2 − 1)+ ω2x = 0

where the nonlinear damping makes the fixed pointx = ẋ = 0 an unstable spiral as opposed to the

stable spiral for ¨x+ kẋ+ ω2x = 0.

We introduce a memory dependent switching (6; 8) to write

ẍ+ kẋΘ[x(t) − x(t − τ)] + ω0
2x = 0 (7.1.1)

In the aboveΘ(y)is the step function which is+1 if y is positive and -1 if y is negative andτ is a

preassigned time. The switching is apparent if we write Eq(7.1.1) as

ẍ+ kẋ+ ω0
2x = 0 i f x(t) > x(t − τ) (7.1.2)

ẍ− kẋ+ ω0
2x = 0 i f x(t) < x(t − τ) (7.1.3)

The switching condition makes it clear that the switching is memory dependent. Wenote immedi-
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ately that the stable spiral in the absence ofΘ-function becomes a centre in its presence. This is the

indication of the existence of something different and accordingly we write down the solutions for

the two segments Eqs(7.1.2,7.1.3) asx1(t) = Ae−
k
2 t cos (ωt + φ1), x2(t) = Be

k
2 t cos (ωt + φ2) where

A, φ1, B, φ2 are determined by initial conditions andω =
√

ω0
2 − k2

4 . A periodic solution of period

T would imply that there is at least one switch in the interval 0< t < T. Investigating solutions with

one switch only, we requirex1(t′) = x2(t′) and ˙x1(t′) = ẋ2(t′) for a smooth solution and periodicity

implies x1(0) = x2(T) with ẋ1(0) = ẋ2(T). It is straight forward to see that a solution can be found

for T = 2π
ω

and t′ = T
2 . The actual existence of a switch is controlled by the “memory time ”

τ. We note that ifωτ << 1, then the theta function can be written asΘ(ẋτ). It is the sign of the

velocity that controls the switch in this case and it is easy to see that a periodic orbit will result. The

same argument holds forτ = T, the orbit is now simply inverted with respect to the previous one.

We show the numerical evidence of the periodic orbits in Fig 7.1. While the orbithas some limit

cycle characteristics in that it is a periodic orbit. In a non conservative system, the size of the orbit

depends on initial condition Fig 7.2(a) which is a hallmark of a conservative system. We note that

while the limit cycle ofτ = 0 andτ = T are easily understandable, it is the closed orbit forτ = T
2

which is nontrivial. In general, we find a quantisation of stabilising ‘τ’ in units of the half periodT
2

Fig 7.2(b).

Limit cycle oscillations have practical applications in many nonlinear mechanicalas well as elec-

tronic systems. Based on the above observations, we now propose a method to control chaotic

dynamics by converting chaotic oscillators to limit cycles. We propose to exploitthe known regular

dynamics of these systems to flip the control parameter in the ‘favourable’ region when the dynam-

ics seem to become irregular. This will help stabilize limit cycles in the following systems.

Let ẋi = fi(µ̄, {x j}), whereµ̄ is a set of control parameters, represent a chaotic system. In what

follows, we will take µ̄ to have only one componentµ. We assume the system shows chaotic as

well as non-chaotic dynamics for different values of control parameter. We make our parameterµ

memory dependent so that the system can self-modulate its dynamics according to the controlling

method. The dynamics will be governed by both chaotic as well as non-chaotic attractors. So, for
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Figure 7.1: Limit cycle for (a)τ = 0.001 and the time series(b). (c)τ = 4.749≈ T
2 and time series

(d). (e)τ = 9.45≈ T and time series (f). Initial condition is taken asx0 = ẋ0. k=1.5 andω0 = 1.0.
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Figure 7.2: Shape as well as amplitude of limit cycle depends on the initial condition. (a) width
(for x axis) of the limit cycle is plotted with initial condition. ˙x0 is taken constant in this figure.
(b)Lyapunov exponents for the damped oscillator under memory modulation.Lyapunov exponents
are plotted against the feedback timeτ. the positive Lyapunov exponents in figure (b) indicates
runaway solution for the oscillator.

certain choice ofµ there can be a balance between both type of dynamics and the system can show

limit cycle oscillation.

7.2 Modification of Pyragas scheme

We propose the following controlling method to modify dynamics of chaotic systemsto limit cycle

oscillations. We assume forµ < µc the system dynamics is regular (fixed point or periodic orbit)

and forµ > µc the system is chaotic. We replaceµ by µ + εΘ[x(t) − x(t − τ)] whereΘ is +1 for

x(t) > x(t − τ) and -1 forx(t) < x(t − τ). τ is some predefined timescale. For smallτ this control

method restricts the dynamics from going very far from its initial points. For certain values of

controlling parameterε, the chaotic and fixed point dynamics balance each other and we see limit

cycle oscillations.
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7.3 Non phase coherent oscillators

We start with Lorenz oscillator. We modify the usual controlling parameter r. Without any loss of

generality we can modify the system as following;

ẋ = σ(y− x)

ẏ = (r − εΘ[y(t) − y(t − τ)])x− y− xz (7.3.1)

ż = xy− bz

where b andσ have their usual values. Ifτ is small theΘ function is governed by the local dynam-

ics. If the trajectory tries to move far from the initial points, r is changed tor − ε and it induces

a positive “damping” in the system. Thus the system tries to compensate its “energy” change over

a cycle. For specific values ofε, change in energy over a complete cycle becomes zero and we

observe limit cycle.

This mechanism is also applicable to many other chaotic oscillators. Whenτ is not small two cases
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Figure 7.3: Limit cycle due to memory modulated parameter control of Lorenz system. Usual
parameters are taken.σ = 10,b=8

3 and r=28. ε=10.0 andτ = 0.001 are taken for this figure.
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can happen. For phase coherent attractors we can define an approximate value for the phase of the

chaotic attractor. Memory modulation of governing parameter of those attractors leads to periodic

dynamics. Those attractors show periodicity in limit cycle oscillations, ie. only for discrete values

of τ we see limit cycles. For non phase coherent attractors we do not see periodicity in τ for its

larger values though for smaller values ofτ we do see periodic oscillations. Lorenz system under

usual parameter regime shows double loop chaotic attractor which is a good example of a non phase

coherent attractor.

7.4 Phase coherent oscillators

We demonstrate the first mechanism for a phase coherent chaotic system. Under certain parameter

values (a=b=0.2,c=5.7) R̈ossler oscillator goes through chaotic motion and the chaotic attractor is a

phase coherent one. We numerically calculate the approximate time period of the Rössler oscillator.

Measurement of time period of more complicated attractors can be done by estimating Hilbert phase

and measuring the corresponding time period.

Now we takeτ→ 0, T
2 ,T and control the parameter ‘b’ with the same kind of prescription as before

ẋ = −y− z

ẏ = x+ ay (7.4.1)

ż = b+ εΘ[y(t) − y(t − τ)] + z(x− c)

Here a,b and c have their usual values. TheΘ function can take the values either+1 or -1 and hence

can lead to damped as well as undamped solution. The dynamical analysis resembles the earlier

analysis for 1-D oscillator and we observe limit cycle oscillations as shown in Fig 7.4(b). This is to

be compared with the corresponding limit cycle stabilization of Pyragas which isshown for refer-

ence in Fig 7.4(a). It should be noted that we do not use a feedback nordo we look for the UPOs.

To verify that the underlying dynamics is the same as with the 1-D model we calculated numeri-
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Figure 7.4: (a) Stabilization of period three cycle can be observed with external parametric modu-
lation suggested by Pyragas . (K=0.2,τ=17.5) (b) limit cycle formed by controlling the parameter
‘b’ with memory modulation. Usual parameters (a=b=0.2,c=5.7) are taken for the figure.ε=0.23,
τ=0.001 leads to this limit cycle.(c) Lyapunov exponent is plotted withτ. Limit cycle occurs for
discrete range of feedback timeτ periodically.
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cally the average value of time period for the Rössler oscillator and found the Lyapunov exponents

for different values ofτ. From Fig 7.4(c) we can seeτ ≈ nT cases lead to more stable formation

of limit cycle thanτ ≈ (n + 1
2)T. In chaotic oscillators phase space points are revisited only ap-

proximately. We observe limit cycles only whenτ ≈ nT, n=0,1,2,. . . . The Lyapunov spectrum with

respect toτ shows a sharp fall. This result confirms our speculation that chaotic dynamics can be

altered to limit cycle oscillations using memory dependent parameter modulation.

7.5 Discussion

we have shown that a memory dependent switching of a control parameter ina dynamical system

can be very effective in altering the dynamics. With the prescription given Pyragas it is possible

to control chaotic oscillators where we know the position of the UPOs. Our approach is closer to

OGY approach in the sense that we also modulate the parameter of the dynamical system. In our

method we do not need to know the UPOs and we can also apply our method where only time series

is available. In particular, this can have applications in control of chaos especially in controlling

experimental time series.
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Chapter 8

Conclusion

The main goal of this thesis is to study effects of memory modulation on nonlinear as well as chaotic

systems. Control of chaos is one of the most relevant fields for research in nonlinear dynamics.

Many methods have been proposed for controlling chaos in last two decades. More recently un-

derstanding of usefulness of chaos in physical system has drawn attention of nonlinear dynamicists

and has become an active field. In this thesis we have developed memory dependent control algo-

rithms and analysed the resultant dynamics. While external feedback methodsare quite common in

literature for controlling chaotic dynamics, memory dependent feedback is rare. In iterative maps

this technique has been applied in the from of one step memory dependence.We justify the idea of

a one step memory dependence as follows. Iterative maps are generated from stroboscopic maps of

higher dimensional continuous system. Now a single step in the map corresponds to a fixed time

span in the continuous system. In stroboscopic maps we get a section of the continuous system at

equal intervals of time. Thus a one step memory in the map is a memory of an event occurring a

finite time earlier in the continuous system.

We systematically studied the effects of memory modulation. Logistic map has long been taken

as a standard system for exploring the dynamics of one dimensional iterative maps. We suggest a

prescription for controlling this map with memory dependent modulation. This modulation not only

changes the usual chaotic and non-chaotic ranges it is also able to show richer dynamics. In standard

111
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chaotic maps we can see intermittent transition to chaos from periodic dynamics.In logistic map

it occurs through type-I kind of intermittency where local map is quadratic. This intermittent tran-

sition predicts the relation between the distance from the periodic window with average length of

periodicity in the time series. Under memory modulation the relation changes even iflocal mapping

remains the same. The new idea of re-injection mechanism is included to explain this phenomenon.

Various kinds of modulation are possible to implement on maps. We investigated a different kind of

modulation on the same logistic map. Different modulations serve different purposes. Unlike pre-

vious case here we also studied the interplay between highly chaotic dynamicswith stable periodic

dynamics. We found that this memory modulated map gives rise to a long sequence of period-

adding bifurcation. Period adding bifurcations are usually seen in piecewise linear maps where

the periods are generally interspersed with chaotic bands. Here we showed different mechanism

(memory modulation) can also generate this phenomenon. We presented a scenario where period

adding cascade is much cleaner so that we can analytically calculate the ratio ‘δ’ of the widths of

two adjacent periodic windows. This ratio is universal in the sense that whenever the local map is

quadratic under the same mechanism the same analysis follows.

The phenomena of period adding is seen to be ubiquitous in the memory dependent maps. We

studied two dimensional discrete Lotka-Volterra system as a natural extension of the one dimen-

sional iterative maps. Discrete Lotka-Volterra shows periodic as well as chaotic dynamics. It also

shows invariant cycles as it goes through Neimark-Sacker bifurcation.We studied this system under

memory modulation. The existence of both chaotic and periodic dynamics leads toperiod adding

bifurcation. We showed numerically that period adding only occurs in presence of both periodic and

chaotic dynamics. Though here we did not see any universal ratio for period adding bifurcation. We

need to study this dynamics more in depth in future to explore the underlying dynamics and explain

this type of period adding in greater detail.

Finally we showed modulation of chaotic dynamics to periodic limit cycles can be achieved through

similar kind of memory dependent modulation. We improved our prescription of memory modu-

lation through low dimensional discrete dynamical systems and eventually applied it to continuous
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chaotic systems. Controlling chaos has earlier been suggested by Ott, Grebogi and Yorke (OGY).

Unlike OGY method, the controlling methods explained in this thesis control the dynamical sys-

tem globally. As a natural consequence interplay between chaotic and periodic dynamics becomes

important. As a outcome of this interplay many new and rich dynamics can be seen. Memory de-

pendent control methods make the systems discontinuous in general. This discontinuity is often the

cause behind the generation of many rich dynamics that was absent in the original systems.


